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Abstract

A Gray code is an ordering of objects in which consecutive objects are similar to each other. These

orders are similar in some ways to a type of puzzle known as a word ladder. A word ladder puzzle

starts with specified first and last words, and the goal is to create a list of words in which consecutive

words differ in a single letter. Given head and tail, a potential solution is head, heal, teal, tell,

tall, tail. In contrast, Gray codes are typically focused on mathematical objects of a particular

size and type. For example, the binary reflected Gray code orders the 2n binary strings with n bits

in such a way that consecutive strings differ in a single bit: 000, 001, 011, 010, 110, 111, 101, 100 is

the order for n = 4. Similarly, plain changes orders the n! permutations of [n] = {1, 2, . . . , n} so

that consecutive permutations differ by a swap: 1
←→
23 ,
←→
132, 3

←→
12 ,
←→
321, 2

←→
31 , 213 is the order for n = 3.

These two orders are also examples of greedy Gray codes, meaning that they can be constructed by

greedy algorithms. In particular, the binary reflected Gray code greedily complements the rightmost

bit that gives a new binary string, while plain changes greedily swaps the largest value that gives

a new permutation. The two orders can also be generated by efficient loopless algorithms, meaning

that consecutive objects are created in worst-case O(1)-time.

In this thesis, we consider Gray codes for the signed permutations of [n]. These objects are

permutations except that each value is independently given a positive or negative sign. There are

2n · n! such objects for a given value of n. More specifically, each signed permutation can be seen

as the product of a permutation of [n] and an n-bit binary string, where the ith bit provides the

sign of the value i. We provide 12 different Gray codes for the signed permutations of [n]. Each

of the orders can be constructed greedily through different prioritizations of swaps, 1-twists and 2-

twists. Furthermore, these algorithms produce elegant and memorable patterns that pay homage to

both the binary reflected Gray code and plain changes. Selected proofs of correctness are presented.

Furthermore, we provide loopless algorithms for all 12 Gray codes. These implementations are based

on new signed variants of integer sequences known as ruler sequences that we refer to as signed ruler

sequences. Finally, we discuss recent greedy basis-exchange Gray codes for matroids by Merino

et. al, including Gray codes for the spanning trees of complete graph Kn. We demonstrate that one

of these Gray codes is cyclic, and consider the goal of generating it efficiently.

7



Chapter 1

Introduction

This thesis is focused on the development of simple and efficient algorithms for generating signed

permutations in Gray code order. This chapter introduces the background concepts of Gray codes,

combinatorial generation, and signed permutations. New results and an outline are provided at the

end of the chapter.

1.1 Gray Codes

Informally, a Gray code orders of a set of objects so that the next object always differs from the

previous object by some small amount. To introduce this idea, it is helpful to consider a type of

puzzle that was invented by Lewis Carroll on Christmas 1877 [8, 25]. A word ladder1 is populated

by a first and last word of the same length, and the player must complete the list in such a way

that successive words differ in one letter. Word ladders illustrate the notions of “an ordering” and

“small amount” used in Gray codes. On the other hand, Gray codes typically focus on sets that

contain every object of a particular type and size, and the first and last objects are not specified.

For instance, the set of all 4-letter Scrabble™ words would be a natural choice for “a set of objects”

in a Gray code, and any of these 4,030 words [3] could be chosen to be first or last. These ideas are

illustrated in Figures 1.1 and 1.2.

head, heal, teal, tell, tall, tail

Figure 1.1: Wikipedia’s word ladder from head to tail [64]. Consecutive words differ in one letter,
with the underlined letter changing to create the next word.
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Figure 1.2: Is there a Gray code for the set of all 4-letter Scrabble™ words?

There are various ways to define Gray codes. We consider a set of objects and a set of operations,

and we say that a Gray code is an ordering of the objects in which each successive object can be

1These puzzles (also called doublets and word-links) are often limited to Scrabble™ words.
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1.1. GRAY CODES 9

obtained through a single application of one of the operations to the previous object. A formalization

of this idea appears in Definition 1.

Definition 1. Let A = {a1, a2, ..., am} be a set of objects, F = {f1, f2, . . . , fk} be a set of operations,

and σ be a permutation of {1, 2, . . . ,m} that will be used to order the objects. If aσ1 , aσ2 , . . . , aσm

has the property that ∃i, fi(aσj ) = aσj+1 for 1 ≤ j < m, then the ordering is a Gray code. More

specifically, it is a Gray code of A using the operations F . If additionally ∃i, fi(aσm) = aσ1 , then

the ordering is a cyclic Gray code.

Note that the operations are functions acting on the objects, and we often have that fi : A→ A

for all i. However, there are cases when the range is not always A. For example, suppose that

the objects are the spanning trees of a graph (as in Chapter 6), and the operation te,f toggles the

inclusion of edges e and f . In other words, if T is a set of edges forming a spanning tree, then

T ′ = te,f (T ) = T ⊕ {e, f} where ⊕ denotes symmetric difference (i.e., xor). Note that the resulting

set T ′ is not always a spanning tree (even if |T ∩ {e, f}| = 1). If we really wanted the range of each

function to be spanning trees, then we could further specify that te,f (T ) = T whenever T ⊕ {e, f}
is not a spanning tree. Instead we use the terms valid and invalid when referring to objects, as well

as operations applied to certain objects, when necessary.

Valid operations are also known as changes or flips. For example, we can say that a cyclic Gray

code is a Gray code in which the last object can be transformed into the first object by a flip. When

discussing English words, we will assume that the flips are single letter changes, although different

operations can also be considered. The term minimal change order also refers to our notion of a

Gray code.

1.1.1 Flip Graphs

It can be helpful to visualize Gray codes (and word ladders) using graphs. The underlying flip graph

(or change graph) G(A,F ) contains one node for each object in A, and edges connect two objects

that differ by a flip in F . If the operations are closed under inversions (i.e., if f ∈ F , then f−1 ∈ F ),

then we consider G(A,F ) to be an undirected graph, and otherwise it is a directed graph.

For example, our discussion in Section 1.1 can be modeled by the word graph Wn. This undirected

graph contains one node for each n-letter word, and its edges connect any two words that differ in

a single letter. In particular, the word graph W4 contains 4,030 nodes, each of which is a 4-letter

word.

• A word ladder is a path between two specified words of length n in Wn.

• Gray codes of n-letter words correspond to Hamilton paths in Wn, and cyclic Gray codes

correspond to Hamilton cycles in Wn.

Figure 1.3 shows the (unique) shortest path between head and tail in W4. It also includes

longer solutions to the associated word ladder puzzle, including one that visits a word (veal) that

would concern our college’s mascot.
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head tailheal heil hail

teal tell tall

veal veil vailevil

zebu

Figure 1.3: A subgraph of the word graph W4. The purple path is the word ladder from head to
tail from Figure 1.1, while the gold path provides a shorter solution. Nodes evil and zebu have
degree zero in the graph. In other words, no other 4-letter Scrabble™ word can be obtained by
changing one of their letters.

Figure 1.3 also shows that some nodes in W4 have degree (i.e., number of neighbors) equal to

zero. This means that the graph is disconnected, and it is impossible to solve some word ladder

problems. It also means that there is no Gray code for 4-letter words, so the answer the question in

Figure 1.2 is no.

Next we will look at two of the most important (and well-known) Gray codes.

1.1.2 Binary Reflected Gray Code

The modern history of Gray codes begins with the binary reflected Gray code, which appeared in

multiple patents from Bell Labs in the 1940s. The term reflected binary code was used by Frank

Gray in his 1947 patent application, in which he states that the order “may be built up from

the conventional binary code by a sort of reflection process” [23] as will be explained below. The

eponymous Gray code also demonstrates Stigler’s law [62], as the same order appeared earlier in a

1941 patent application by George R. Stibitz, another Bell Lab researcher. For additional historical

remarks from the 1970s see [19] and [26].

Regardless of its name or origins, the objects in question are the n-bit binary strings, which we

denote as Bn. For example, B2 = {00, 01, 10, 11} and in general, |Bn| = 2n. The operations are

individual bit-flips, meaning that a single bit is complemented from 0 to 1, or vice versa. Given

these objects and operations, the underlying flip graph is the n-dimensional cube Hn, as illustrated

in Figure 1.4.

We index the bits in a binary string b ∈ Bn as b = bnbn−1 · · · b1 (i.e., right-to-left starting with

index 1). The · operation denotes concatenation and is frequently omitted (i.e., 0 · · · 1 = 01). The

set Bn can then be created from the set Bn−1 as follows (where color is added for emphasis).

Bn = {0 · b | b ∈ Bn−1} ∪ {1 · b | b ∈ Bn−1} (1.1)

In other words, we can create Bn by taking two copies of each b ∈ Bn−1, and prefixing 0 to one

copy, and prefixing 1 to the other copy.

As Gray mentioned, and as its name implies, the binary reflected Gray code can be constructed

using reflection. More specifically, the second copy of the order on n − 1 bits is reflected (i.e., the
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000
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110
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011

010

(a) H3

0000

0001

0101

0111

0110

0100

0011

00101000

1001

1101

1111

1110

1100

1011

1010

(b) H4

Figure 1.4: The vertices of the n-dimensional cube are the n-bit binary strings Bn, and the edges
connect those that differ in a single bit.

last string goes first and the first string goes last). The order is formally defined as

brgc(n) = 0 · brgc(n−1), 1 · reflect(brgc(n−1)) (1.2)

where brgc(1) = 0, 1 provides the base case. In this formula (1.2), the 0· denotes prefixing 0 to the

front of every string in brgc(n−1), and similarly, 1· denotes prefixing 1 to the front of every string

in reflect(brgc(n−1)). As mentioned above, the reflect operation reorders brgc(n−1) so that its last

string is first, and its first string is last. Finally, the comma in the middle is used to join the two

suborders into a single order. The application of this recursive formula is illustrated below in (1.3)

and (1.4).

Note that this definition means that the most significant digit is flipped only once when tran-

sitioning between the two copies of brgc(n − 1). To illustrate this process, brgc(3) is listed as the

following:

brgc(3) = 000, 001, 011, 010, 110, 111, 101, 100. (1.3)

To generate the n = 4 BRGC, we use two copies of the above list and prefix 0 and 1 to the two

copies, respectively, and the second copy is reflected:

brgc(4) = 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100,

1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000.
(1.4)

We refer to the recursion used in (1.2) as global recursion because it operates on the suborders

brgc(n − 1) as individual units, rather than considering their individual objects. In other words, it

doesn’t split up the brgc(n − 1) suborders, so they appear in brgc(n) (although the second copy is

reflected).

To fully understand why (1.4) is indeed a Gray code for B4 using bit-flips, we can make several

simple observations. First, note that (1.4) contains each object in B4 exactly once, and more

generally, this holds for all n by (1.1) and (1.2). Second, note that every transition within the first
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half of brgc(4) is a single bit-flip due to the fact that this is true for brgc(3), and similarly, this is

true for the second half of brgc(4) since reflecting brgc(3) does not change this property. The same

argument holds for arbitrary n. Third, note that the transition from the last string in the first half

of brgc(4) to the first string in the second half of brgc(4) is the transition 0100, 1100, which is a

bit-flip of the most significant digit. To ensure that this property holds for all n we state two simple

remarks that follow easily by (1.2) and induction on n. These remarks use the convention that

exponentiation denotes repeated concatenation. For example, the last string in (1.4) is 103 = 1000.

Remark 1. The first string in brgc(n) is 0n.

Remark 2. The last string in brgc(n) is 10n−1.

These remarks ensure that the first half of brgc(n) ends with 010n−2, and the second half of

brgc(n) begins with 110n−2 (keeping in mind that the first string in reflect(brgc(n − 1)) is the last

string in brgc(n − 1)). As previously mentioned, this transition is the only time in the order that

the leftmost bit is changed, and Figure 1.5 highlights this bridge graphically for n = 4. Remarks

1–2 also imply that brgc(n) is a cyclic Gray code.

000

001

101

111

110

100

011

010

(a) brgc(3) in H3

0000

0100

0101

0111

0011

0001

0110

0010

1000

1001

1101

1111

1110

1100

1011

1010

(b) brgc(4) in H4

Figure 1.5: Illustrating how the binary reflected Gray code has a single bridge transition between
its two subcubes. Note that the left copy of H3 in (b) has been reflected left-to-right relative to (a)
in order to simplify the drawing.

Outside of this thesis, the term Gray code often refers exclusively to bit-flip orders of n-bit binary

strings. In fact, the term sometimes refers only to the specific order discovered by Stibitz, Gray, and

others.

Application: Rotary Encoders

Binary Gray codes using bit-flips, including the binary reflected Gray code, are used in a large number

of applications in a variety of fields. One such example is a rotary encoder. These electromechanical

devices convert the angular position of a shaft into a digital signal. For example, when you rotate

the volume dial in your car, the stereo converts its rotational position into a digital value. This

is done by placing n concentric rings of magnetic (or optical) material around the back of the dial

to represent the least significant bit b1 (outer ring) to most significant bit bn (inner ring). The

area is partitioned into 2n sectors or wedges, each of which is patterned radially with a distinct
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n-bit pattern. An n-bit sensor, which does not spin, is situated radially behind the dial, and it

detects which of the 2n sectors, or states, it is aligned with. A potential problem arises whenever

the dial is rotated in such a way that two sectors are straddling the sensor. If k different bits change

between the binary patterns on the two neighboring sectors, then the sensor could read the state in

2k different ways. By using a cyclic Gray code like brgc(n), we ensure that k = 1 bits differ between

neighboring sectors, thereby ensuring that the state will be read in 21 = 2 possible ways (i.e., as one

of the two sectors straddling the sensor).

The encoding used in a rotary encoder appears in Figure 1.6 for n = 4. Besides being functional,

the diagram also gives a birds-eye view of brgc(4), and this type of visualization is now widely used

to illustrate other types of Gray codes [43]. Commercially available rotary encoders often have at

least 10 rings and over a thousand states [1].

0

1

2

3
4

5

6

78

9

10

11
12

13

14

15

b 4
b 3

b 2
b 1

Figure 1.6: An n-bit rotary encoder for n = 4. It contains n rings and 2n sectors, with each sector
having a different binary pattern bnbn−1 · · · b1 ∈ Bn. Successive sectors follow the binary reflected
Gray code brgc(n) in clockwise order (e.g., b4b3b2b1 = 0000, 0001, 0011, . . . , 1000) with white/black
for 0/1. If the n-bit sensor straddles two sectors, then the Gray code property ensures that only
one bit has an ambiguous value, and that the state will be read as being in either of the straddling
sectors. Image adapted from [22].

1.1.3 Plain Change Order

Perhaps the most well-known Gray code after the binary reflected Gray code is plain changes. This

order is not based on n-bit binary strings and the bit-flip operation, but rather on permutations and

swaps.

A permutation of the set S = {s1, s2, ..., sn} can be loosely defined as an arrangement of elements

in sn into a linear order. For example, if S = {a, b, c, d}, then the permutations of S (written in

one-line notation) include abcd, abdc, cabd, dacb and so on. In particular, we let Sn be the set of

permutations of [n] = {1, 2, . . . , n}. For example, S3 = {123, 132, 213, 231, 312, 321} and in general,
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|Sn| = n!.

A transposition on a permutation can be defined as interchanging the position of two elements

in the permutation. For example, we can swap 1 and 4 in the permutation 1234 ∈ Sn to obtain

4231 ∈ Sn. An adjacent-transition is a transposition in which the two positions are consecutive,

or equivalently, the transposed elements are next to each other in the permutation. Adjacent-

transpositions are also known as swaps. Given these objects and operations, the underlying flip

graph is the permutohedron Pn, as illustrated in Figure 1.7.
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2413

2143
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(b) P4

Figure 1.7: The vertices of the permutohedron Pn are the permutations Sn, and the edges connect
those that differ by an adjacent transposition (i.e., swap).

We index permutations in the same way that we index binary strings. That is, if p ∈ Sn, then

p = pnpn−1 . . . p1. The set Sn can be created from the set Sn−1 as follows (where color is added for

emphasis).

Sn = { n · pn−1pn−2pn−3 · · · p1 | p ∈ Sn−1} ∪

{pn−1 · n · pn−2pn−3 · · · p1 | p ∈ Sn−1} ∪

{pn−1pn−2 · n · pn−3 · · · p1 | p ∈ Sn−1} ∪ (1.5)

· · ·

{pn−1pn−2pn−3 · · · p1 · n | p ∈ Sn−1}

In other words, we can create Sn by taking n copies of each p ∈ Sn−1, and inserting the symbol n

into each of the n possible positions. This is done in (1.5) by splitting each p ∈ Sn−1 string into

two substrings in all n ways.

Notice that the column of strings in (1.5) differ by swaps for a fixed p ∈ Sn−1. For example, the

strings in the first row and second row differ by a swap of the values n and n− 1. The strings in the

second and third row then differ by a swap of the values n and n − 2 swap, and so on. We’ll refer
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to this left-to-right motion as zagging n through p. Similarly, the reverse right-to-left motion (i.e.,

obtained by reading (1.5) from bottom to top) is zigging n through p.

Plain changes is created by alternately zigging and zagging n through successive permutations

in the order of Sn−1. We let zign and zagn give the length n lists that repeatedly swap n to the left

or right as described above. The order is formally defined as

plain(n) = zign(p1), zagn(p2),

zign(p3), zagn(p4),

zign(p5), zagn(p6), (1.6)

. . . ,

zign(p(n−1)!−1), zagn(p(n−1)!)

where plain(1) = 1 and plain(2) = 12, 21 are base cases, and plain(n− 1) = p1,p2, . . . ,p(n−1)!.
2 We

refer to the recursion used in (1.6) as local recursion because it operates on the individual objects

within the suborder plain(n − 1). Note that two bases were used as the end of (1.6) assumes that

(n−1)! is even.

To illustrate this process, the plain change order for n = 3 is given below.

plain(3) = 123, 132, 312, 321, 231, 213. (1.7)

To generate plain changes for n = 4 we zig and zag n through each successive permutation as follows.

plain(4) = zig4(123), zag4(132),

zig4(312), zag4(321),

zig4(312), zag4(321),

= 1234, 1243, 1423, 4123, 4132, 1432, 1342, 1324, (1.8)

= 3124, 3142, 3412, 4312, 4321, 3421, 3241, 3214, (1.9)

= 2314, 2341, 2431, 4231, 2134, 2413, 2143, 2134 (1.10)

To fully understand why (1.8) is indeed a Gray code for S4 using swaps, we can make several

simple observations. First, note that (1.8) contains each object in plain(4) exactly once, and more

generally, this holds for all n by (1.5) and (1.6). Second, note that every transition within an

individual zig and zag sublist of S4 is a swap, and this holds for arbitrary n. Third, note that the

transition from the last string in zig sublist to the first string in the next zag sublist has the form

4pi, 4pi+1, which is a swap due to 4 being on the left side and pi and pi+1 differing by a swap in

(1.7). Similarly, the transition from the last string in zag sublist to the first string in the next zig

sublist has the form pi4, pi+14, which is a swap due to 4 being on the right side and pi and pi+1

differing by a swap in (1.7). The same result holds for arbitrary n.

2Bold is used in each pi to denote that it is the ith permutation in the suborder, whereas the lack of bold would
indicate that pi is a specific symbol in a permutation.
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Values 1 and 2 are swapped only once in plain(n). An additional swap makes the order cyclic.

This is true by the following remarks which use induction on n.

Remark 3. The first permutation in plain(n) is 1234 · · ·n.

Remark 4. The last permutation in plain(n) is 2134 · · ·n.

It may be tempting to dismiss plain changes as trivial mathematics. To counter such an urge,

consider the following anecdote. In 1964, Ron Graham and A. J. Goldstein attempted to generate

permutations by swaps. They were unaware of plain changes, and their result [21] is nowhere near

as elegant3. In other words, plain changes is not always obvious even for brilliant mathematicians.

On the other hand, it is simple enough to have been rediscovered many times, as we will see next.

Application: Bell Ringing

Plain changes was discovered by bell ringers in the 1600s [13] (see Knuth [32]), and it has been

used continually by bell ringers (especially English bell ringers) until today. The permutation was

used a sequence for ringing n church bells, and an extent rings all n! sequences in succession. Due

to inertia, a bell’s order cannot change arbitrarily from one sequence to the next, but swaps are

feasible. (i.e., one bell moves one position earlier in the sequence, while another moves one position

later. Bell-ringers moved on to more complex patterns with multiple swaps between permutations

[4], but the dawn of efficient computing led plain changes to be rediscovered multiple times under

the Steinhaus-Johnson-Trotter algorithm moniker [59] [30] [63]. Regardless of its name, Sedgewick

referred to the order as “perhaps the most prominent permutation enumeration algorithm” in a

survey from 1977 [58].

1.1.4 Additional Gray Codes

While the binary reflected Gray code and plain changes are two mainstream Gray codes that have

widespread applications, there are many other Gray codes that are interesting to explore. These

include Gray codes for other combinatorial objects (e.g., combinations, partitions, graphs, and so

on).

In Section 2.4 we will see two additional Gray codes for permutations, including one that gen-

eralizes to colored permutations. A colored permutation is a permutation in which each value is

assigned one of c colors. Standard permutations are obtained when c = 1, and signed permutations

are obtained when c = 2 (i.e., the positive and negative signs are interpreted as two different colors).

There exist other generalizations of permutations including k-permutations (where only k ≤ n values

from [n] are included) and multiset permutations (where the set [n] is replaced by a multiset). There

are well-known Gray codes for these generalizations (e.g., see [29] for k-permutations and [65] for

multiset permutations). In contrast, Gray codes for signed permutations have not been studied in

as much detail, with [34] providing one such example.

3An internal Bell Labs report [20] contains an implementation of [21], but the authors have not been able to obtain
a copy of it.
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Additional Gray codes also exist for binary strings. In particular, a Beckett-Gray code is based

on Samuel Beckett’s play Quad [5]. When designing this play, Beckett attempted to create 24 = 16

different scenes with the property that successive scenes differed by having one cast member enter

the stage or leave the stage. If this were the only constraint, then the binary reflected Gray code

brgc(4) would have sufficed. This is because each subset of cast members can be represented by

a binary string b1b2b3b4 (with bi = 1 indicating that cast member i is on-stage) and successive

scenes would differ in a single bit. However, Beckett also wanted to have an additional property:

the only cast member who can exit the scene is the member who had been on stage the longest

amount of consecutive prior scenes. Later research showed that these restricted Gray codes exist

for n = 2, 5, 6, 7, 8 and do not exist for n = 3, 4 (including Quad). For further information on

Beckett-Gray codes see [57], [11], [9].

For a wider introduction to Gray codes in general, we recommend the classic survey by Savage

[52], as well as a more recent survey by Mütze [42]. We also note that questions on the existence of

Gray codes are often NP-complete when limited to a subset of objects that are provided as part of

the input [40].

1.2 Combinatorial Generation

A common task in computer programming is to generate every instance of a particular combinatorial

object. This task arises for many different reasons, including testing. For example, one may wish to

generate all n-bit binary strings in order to test a (simulated) circuit with n inputs. Alternatively,

one may wish to generate all permutations of [n] in order to test if a student’s implementation of a

sorting algorithm is correct.

The area of combinatorial generation is focused on these tasks. In combinatorial generation,

the baseline goal is to generate each object exactly once. Typically there are exponentially many

instances of the combinatorial object in question (e.g., 2n binary strings or n! permutations). For

this reason, we want to create each object once in memory, without putting storing every object

simultaneously in a list. When writing pseudocode we use the term visit to signify that the next

object is available for the application to use. Many programming languages have iterators and

generators to facilitate this particular approach. When working with other languages, generation

algorithms often allow applications to provide a visit function, which is then called whenever the

next object is available.

When evaluating the efficiency of a combinatorial generation algorithm, we focus on the amount of

time and memory required to create the next object. For example, an algorithm that has polynomial-

delay means that it is always able to create the next object in polynomial-time with respect to the

size of the object. When working with simpler combinatorial objects, the goal is often O(1)-time

delay, either in a worst-case or amortized sense. These algorithms are known as loopless and constant

amortized time (CAT) algorithms, respectively.
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1.2.1 Lexicographic Order

As Ruskey explains in Combinatorial Generation [48], humans have been making exhaustive lists of

various kinds for thousands of years. More often than not, these lists have been in some variation of

alphabetic or numeric order. More generally, we use the term lexicographic order to refer to orders

that are applied symbol-by-symbol from left to right. More precisely, lexicographic order generalizes

alphabetical order to any totally ordered set P = p1, p2, ..., pn. Assuming a and b are two different

words created with elements in P with the same length, then a < b if and only if there exists i such

that ai < bi. Figure 1.8 illustrates lexicographic order for the words found in the word ladder at the

beginning of this chapter.

head, heal, tail, tall, teal, tell

Figure 1.8: The lexicographic ordering of the words found in Figure 1.1. Note that consecutive
words in this order differ in up to three letters.

Lexicographic order is the most commonly used order in combinatorial generation. While the

order is straightforward and easy to understand, it is usually not the most efficient order for working

with simple combinatorial objects. This is because there is no limit on how much two consecutive

objects in the order can differ. For example, the binary string 01n−1 is followed by 10n−1 (i.e., all

bits change) in lexicographic order. Similarly, the permutation 1nn−1 · · · 2 is followed by 2134 · · ·n
(i.e., all symbols change) in lexicographic order. As a result, lexicographic order algorithms typically

require ⊗(n)-time to create the next object.

1.2.2 Loopless Algorithms

A combinatorial generation algorithm is loopless if it generates each successive object in worst-case

O(1)-time [15]. This term comes from the fact that these algorithms typically have no inner loops.

These algorithms are also known as loop-free algorithms.

At first the goal of a loopless algorithm may seem impossible. If the size of the combinatorial

object is parameterized by n, then how can successive objects be created in O(1)-time? The trick is

that only one object needs to be stored in memory, and the generation algorithm can simply change

this object to effectively create the next one. In other words, the speed of the algorithm is limited

not by the size of the objects, but by the size of the changes. If the algorithm follows a Gray code

order, and the algorithm stores the object in a suitable data structure for the Gray code’s changes,

then a loopless algorithm becomes possible.

It is notable that there are loopless algorithms to generate both the binary reflected Gray code

and plain change order [15]. In both cases, the algorithms are based on generating the changes made

between successive objects, as discussed in more detail in Chapter 3.

A weaker goal is to generate each successive object in amortized O(1)-time. These algorithms

are called constant amortized time (CAT) algorithms. In these algorithms it often takes constant

time to create the next object, but sometimes it takes longer. Depending on the combinatorial

object, it may also be possible for a CAT algorithm to use lexicographic order. For example, this is
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possible for binary strings, since an average of two bits change when creating the next binary string

in lexicographic order. CAT algorithms are weaker than loopless algorithms in a theoretical sense,

but they are often just as fast or faster in practice.

1.2.3 Application: Exact Algorithms

Combinatorial generation is central to many applications beyond testing, such as exact algorithms

to NP-complete problems. In these problems Gray code algorithms can be particularly useful. For

example, a traveling salesman problem on n cities can be solved by generating all n! permutations

of [n], with each member of Sn providing a possible route through the cities (e.g., p1p2 · · · pn ∈ Sn

represents the route p1 → p2 → · · · → pn). Plain changes is advantageous because successive routes

differ in at most three segments (e.g., swapping pipi+1 to pi+1pi replaces segment pi → pi+1 with

pi → pi+2) [28]. Thus, the distance of each successive route can be updated in constant time.

Now consider a variant of the renowned Travel Salesman Problem (TSP) involving trains, where

each of the n stations can be entered/exited in one of two orientations (e.g., the train may travel

along the station’s eastbound or westbound track). Note that the time taken to travel from one

station to another depends on these orientations. As a result, there are 2n · n! possible routes and

they correspond to objects that we will refer to as signed permutations.

1.3 New Results

This thesis provides new Gray codes for signed permutations, along with simple loopless algorithms

for generating them.

Informally, a signed permutation is the product of a binary string and a permutation. More

formally, a signed permutation of [n] is a permutation of [n] in which every symbol is appended

a ± sign in the front. Let S±n be the set of signed permutations of [n]. For example, the signed

permutations for n = 2 appear below.

S±2 = {+1+2, +1−2, −1+2, −1−2, +2+1, +2−1, −2+1, −2−1} (1.11)

More generally, |S±n | = 2nn!.

We visualize signed permutations using two-sided ribbons. A two-sided ribbon is polished only

on one face, and we model a signed permutation with n two-sided ribbons running in parallel. One

of our results is a “twist Gray code” for signed permutations: each successive signed permutation in

is created by a 1-twist (turn over one ribbon) or a 2-twist (turn over two consecutive ribbons and

reverse their order). More specifically, the order is created by greedily 2-twisting the largest possible

value (ignoring the signs) followed by 1-twisting the largest possible value. These ideas are further

explained in the coming chapters, with visualizations of the order appearing at the start of Chapter

4 (see Figures 4.1 and 4.2). A conference paper discussing this particular result was presented at

the Latin 2024 conference [47].

This thesis explains how our new twist Gray code order was discovered, and how it fits into the
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existing literature on Gray codes and combinatorial generation. More broadly, we create 12 new

Gray code algorithms for efficiently generating signed permutations. Each of these results is inspired

by the binary reflected Gray code and plain changes.

1.4 Outline

In Section 1.1, we defined the binary reflected Gray code and plain changes using global and local

recursion, respectively. Instead it is possible to generate these orders using simple greedy algorithms.

The greedy Gray code algorithm is investigated in Chapter 2.

Loopless algorithms for generating the binary reflected Gray code and plain changes are based

on describing and generating their change sequences. In both cases, the change sequences follow a

type of pattern known as a ruler sequence. Ruler sequences and loopless algorithms for generating

them are provided in Chapter 3.

Chapter 4 discusses our experiments on greedily generating Gray codes of signed permutations.

We investigate 20 different potential algorithms, and find empirical evidence that 12 of them work.

Then we provide proofs for three representative algorithms.

Chapter 5 explains how our new Gray codes can be generated by loopless algorithms using various

signed ruler sequences. Python and C++ implementation of our loopless algorithms appear in the

appendix.

Chapter 6 concludes with further greedy experiments involving Gray codes for spanning trees.



Chapter 2

The Greedy Gray Code Algorithm

This chapter introduces the greedy Gray code algorithm and compares it to backtracking. Greedy

reinterpretations of several classic Gray codes are then discussed, including the binary reflected Gray

code (BRGC) and plain change order. Rulesets that do not produce proper Gray codes are also

covered.

2.1 The Greedy Gray Code Algorithm

Historically, the majority of Gray codes have been initially discovered and defined in a recursive

manner [48]. We prefer another approach that proceeds iteratively. It has provided simpler inter-

pretations of existing Gray code constructions and facilitated the discovery of new orders (including

our new Gray codes for signed permutations that will be discussed in Chapter 4).

Let A = {a1, a2, ..., am} be a set of m objects, and F be a set of k operations. The greedy Gray

code algorithm [66] attempts to create a Gray code one object at time based on two parameters:

a start object s ∈ A, and a prioritized list of the operations ⟨f1, f2, · · · , fk⟩. At each step, the

algorithm extends the current order to a new object by applying an operation to the most recently

created object. The modification with highest possible priority (i.e., the operation with the smallest

index) that creates a new valid object is used, and the resulting object is added to the end of the

current order. If none of the modifications create a new object, then the algorithm terminates.

Pseudocode appears in Algorithm 1. We use ⟨⟩ to enclose ordered structures, with + to extend

them.

This algorithm is not meant to be efficient. More specifically, it remembers every previous object,

so it uses exponential memory when it generates exponentially many objects. However, it has two

benefits. First, it can provide simpler descriptions of Gray codes that were previously defined using

recursion. Second, it provides an easy way to search for simple new Gray codes. To contextualize

the second point, we compare the algorithm to backtracking.

21
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Algorithm 1 The greedy Gray code algorithm. The algorithm attempts to build a Gray code
for objects A using operations F . The input is a start object s ∈ A and a prioritization of the
operations ⟨f1, f2, . . . , fk⟩. The algorithm is not guaranteed to find a suitable Gray code, even if one
exists starting from s.

1: procedure GreedyGray(s,A, ⟨f1, f2, . . . , fk⟩)
2: G = ⟨s⟩ ▷ Initialize the Gray code order to the start object
3: a = s ▷ Set the most recently added object to be a
4: for i = 1, 2, . . . , k do ▷ There are k operations to consider
5: b = fi(a) ▷ Apply the ith operation to create b
6: if b ∈ A & b /∈ G then ▷ Check if b is both valid and new
7: G = G + b ▷ Extend the order to include b
8: a = b ▷ Update the most recent object a
9: i = 1 ▷ Reset the loop counter

10: return G ▷ Return the order that was created

2.1.1 Backtracking

Backtracking provides another way to search for Gray codes. This approach also builds an order

one object at a time, but there is a critical difference. When no modifications can be used to extend

the current order, the most recently created object is removed, and the algorithm goes back to

considering alternate modifications for the second most recently created object. In other words,

when backtracking reaches a dead end, it goes backward to consider other choices. The greedy

algorithm never does this, so it is like backtracking without any backtracking. Pseudocode appears

in Algorithm 2, along with a discussion of how it differs from a recursive version of the greedy Gray

code algorithm.

Algorithm 2 Backtracking algorithm for Gray codes of objects A starting from s ∈ A using
operations F . The parameters are the most recent object s and the partial Gray code G built thus
far. The initial call should omit G and it will be set using the default value G = ⟨s⟩. From the initial
call, the algorithm is guaranteed to return a Gray code starting from s if one exists. We assume
that the set of objects A, and a prioritization of the operations ⟨f1, f2, . . . , fk⟩ are globally available.
To convert this algorithm to a recursive version of Algorithm 1, simply delete line 8 (i.e., always
return G′), which removes all backtracking; one difference is that unsuccessful searches return the
empty list ⟨⟩ here.

1: procedure backtrack(s,G = ⟨s⟩)
2: if |G| == |A| then ▷ Check if every object has been reached
3: return G
4: for i = 1, 2, . . . , k do
5: b = fi(s) ▷ Apply the ith operation to create b
6: if b ∈ A & b /∈ G then ▷ Check if b is both valid and new
7: G′ = backtrack(b,G + b)
8: if |G′| == |A| then
9: return G′

10: return ⟨⟩

At this point, the purpose of the greedy Gray code algorithm may seem unclear. After all, the

backtracking algorithm is a strict improvement over the greedy algorithm in terms of being able
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to find a Gray code. While this observation is true, it also misses the point. When backtracking

succeeds, the resulting Gray code order can be quite complicated. On the other hand, when the

greedy approach succeeds, it is quite likely that the resulting order will be simple. As discussed in

Chapter 4, this is particularly helpful when searching for new Gray codes that have the potential to

be generated efficiently.

Next we discuss greedy reinterpretations of several classic Gray codes. These reinterpretations

were first observed in [66].

2.2 Greedy Implementation of BRGC

As discussed in the section 1.1.2, BRGC orders n-bit binary strings by bit-flips, or successive strings

differ in one bit. Previous research revealed that BRGC can be generated starting at the all-0s string

by greedily flipping the rightmost possible bit [66]. For example, the order for n = 4, brgc(4), begins

as follows, where overlines denote the bit that is flipped to create the next binary string,

brgc(4) = 0000, 0001, 0011, 0010, . . . . (2.1)

To continue (2.1) we consider bit-flips in 0010 from right to left. We can’t flip the right bit since

0010 = 0011 is already in the list. Similarly, 0010 = 0000 is also in the list. However, 0010 = 0110 is

not in the list, so this becomes the next string. Algorithm 3 provides pseudocode for this algorithm,

with a Python implementation the Appendix.

The full BRGC order for n = 4 is visualized in Figure 2.1 using two-sided ribbons, where each

bit-flip is a 1-twist of the corresponding ribbon. Note that the order is cyclic, as the last and first

strings differ by flipping the first bit.

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

Figure 2.1: Binary reflected Gray code using indistinct two-sided ribbons for n = 4.

Remark 5. If the BRGC is started in 100 · · · 00 (the last string of the original BRGC) instead and

generated with the same greedy rule, then the resulting sequence is exactly the reversed sequence of

BRGC.

Remark 6. Through applying the same greedy rule starting at any binary string, a Gray code is

generated. In particular, the final string is equal to the first string but with the first bit complemented,
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Algorithm 3 Greedy algorithm for generating binary reflected Gray code brgc(n).

1: procedure brgc(n) ▷ Binary strings are visited in brgc(n) order
2: π ← 00 · · · 00 ▷ Starting binary string s = π ∈ Bn

3: visit(π) ▷ Visit π for the first and only time
4: S = {π} ▷ Add π to the visited set
5: T = {fn, fn−1, · · · , f1} ▷ Set prioritization of operations T
6: i← 1 ▷ 1-based index into T ; T [1] = fn will flip the n-th digit
7: while i ≤ n do ▷ Index i iterates through the n flips in T
8: π′ ← T [i](π) ▷ Apply the ith highest priority flip to create π′

9: if π′ /∈ S then ▷ Check if π′ is a new binary string
10: π ← π′ ▷ Update the current binary string π
11: visit(π) ▷ Visit π for the first and only time
12: S = S ∪ {π} ▷ Add π to the visited set
13: i← 1 ▷ Reset the 1-based index into T
14: else
15: i← i + 1 ▷ If π′ ∈ S, then consider the next flip

2.3 Greedy Interpretation of Plain Changes

A straightforward greedy realization of plain change order on the set {1, 2, ..., n} also exists: start

at 12 · · ·n and then swap the largest possible digit with its adjacent digit [66]. Such a definition

may seem to be ambiguous at a first glance: should we swap a symbol to the left or the right?

Nevertheless, it turns out that the largest possible digit (the digit to be swapped) is either in the

leftmost or rightmost position, or the opposite swap recreates a previous permutation. A proof of

this simple fact is included in [66].

1 1 1 4 4 1 1 1 3 3 3 4 4 3 3 3 2 2 2 4 4 2 2 2
2 2 4 1 1 4 3 3 1 1 4 3 3 4 2 2 3 3 4 2 2 4 1 1
3 4 2 2 3 3 4 2 2 4 1 1 2 2 4 1 1 4 3 3 1 1 4 3
4 3 3 3 2 2 2 4 4 2 2 2 1 1 1 4 4 1 1 1 3 3 3 4

Figure 2.2: Plain changes plain(n) using distinct one-sided ribbons for n = 4.

Remark 7. If the plain change is started in 2134 · · · (the last string of the original plain change

order) instead and generated with the same greedy rule, then the resulting sequence is exactly the

reversed sequence of plain change.

Algorithm 3 illustrates the structure of a greedy algorithm that generates plain changes.

2.4 Greedy Interpretation of Other Gray Codes

We have seen that the two most familiar Gray codes, the BRGC and plain changes, can be interpreted

using the lens of greedy algorithms in a relatively unequivocal way. Many other classic Gray codes

have simple greedy algorithms as well. Here we mention two additional Gray codes for permutations.

In Zaks’ order [70], the shortest possible prefix is reversed that gives a result that has not already

been created. When discussing this order, each permutation is modeled as a stack of pancakes. For
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Algorithm 4 Greedy algorithm for generating plain changes plain(n).

1: procedure plain(n) ▷ Permutations are visited in plain(n) order
2: π ← 12 · · ·n ▷ Starting permutation s = π ∈ Sn

3: visit(π) ▷ Visit π for the first and only time
4: S = {π} ▷ Add π to the visited set
5: T = {←−tn,

−→
tn,
←−
tn−1,

−→
tn−1, · · · ,

←−
t2,
−→
t2} ▷ Set order of operations T

6: i← 1 ▷ 1-based index into T ; T [1] =
←−
tn will swap n left

7: while i ≤ 2n− 2 do ▷ Index i iterates through the 2n− 2 swaps in T
8: π′ ← T [i](π) ▷ Apply the ith highest priority swap to create π′

9: if π′ /∈ S then ▷ Check if π′ is a new permutation
10: π ← π′ ▷ Update the current permutation π
11: visit(π) ▷ Visit π for the first and only time
12: S = S ∪ {π} ▷ Add π to the visited set
13: i← 1 ▷ Reset the 1-based index into T
14: else
15: i← i + 1 ▷ If π′ ∈ S, then consider the next swap

example, if represents 1234, then reversing the prefix of length three corresponds to flipping

the top three pancakes to give or
←→
1234 = 3214. Zaks defined the prefix-reversal Gray code

using recursion in 1984, before it was reinterpreted greedily by Williams in 2013 [66]. Unknown to

those authors at the time, Klügel had discovered the same order by 1796 [27]. The same greedy

strategy also works for signed permutations (see Chapter 4). Here the model is a stack of ‘burnt’

pancakes (i.e., each pancake has a burnt side and an unburnt side) and the operations are sign-

complementing prefix-reversals [53]. For example, the signed permutation −1+2+3+4 is modeled

by , and becomes −3−2+1+4 after a flip of length three. More broadly, the minimum

length flip strategy works for colored permutations [6]; that paper also discusses the history of the

permutation order.

Corbett’s order [10] instead uses prefix-rotations, which can be understood as moving one symbol

into the first position, or equivalently, as a prefix being rotated one position to the right. When

discussing this order, each permutation is modeled as marbles on a ramp. For example, if

represents 1234, then a prefix-rotation of length four will cause the fourth marble to be picked up

(allowing the other marbles to roll down) and moved to the top to give or
←−−
1234 = 4123 (where

the arrow shows the movement of one value). This order was also defined recursively before being

reinterpreted greedily. Here the greedy interpretation is somewhat subtle as the prefix-rotations are

prioritized not by minimum length or maximum length, but instead by lengths n, 2, n−1, 3, . . .. In

other words, longest and shortest prefix-rotations are interleaved by extremity.

2.5 Failure of the Greedy Algorithm

When discussing Corbett’s order in the previous section, the reader may have wondered why the

Gray code wasn’t defined to instead prioritize the prefix-rotations from shortest to longest, or longest

to shortest. One compelling reason is that these prioritizations don’t work! For example, suppose

that we prioritize prefix-rotations of length 2, 3, . . . , n which is equivalent to moving the leftmost
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symbol into the first position that creates a new permutation. If we run the greedy Gray code

algorithm starting from the identity permutation 1234 for n = 4, then the algorithm creates the

following order.

←−
1234,

←−
2134,

←−
3214,

←−−
2314,

←−
4231,

←−
2431,

←−
3241, 2341. (2.2)

Note that we reach a stalemate at 2341: there is no symbol that can be moved into the first

position. More specifically,
←−
2341 = 3241,

←−
2341 = 4231, and

←−−
2341 = 1234 all appear earlier in the

order. Therefore, this ruleset fails to generate a Gray code for n = 4 starting from 1234. Furthermore,

it fails for any starting permutations when n = 4. This is because prefix-rotations do not consider

the values in the current permutation, so the choice of the starting permutations does not affect

whether the algorithm will be successful or not. More broadly, the minimum-length prefix-rotation

ruleset fails to create Gray codes for larger n.

Remark 8. By greedily moving the leftmost symbol of permutations of [n] (n ≥ 4) to the first

position (also known as prefix-rotation), Algorithm 1 will halt prematurely and fails to generate a

Gray code.

We complete this section by discussing another failure result that is more closely related to the

results of this thesis.

Remark 9. By greedily swapping the rightmost pair of adjacent symbols of permutations of [n]

(n ≥ 4), Algorithm 1 will halt prematurely and fails to generate a Gray code.

For example, consider n = 4. If we start with 1234 and greedily swap the rightmost adjacent

symbols, then the algorithm creates the following order.

12
←→
34 , 1

←→
243, 14

←→
23 , 1

←→
432, 13

←→
42 ,
←→
1324, 31

←→
24 , 3

←→
142, 34

←→
12 , 3

←→
421, 32

←→
41 ,
←→
3214,

23
←→
14 , 2

←→
341, 24

←→
31 , 2

←→
413, 21

←→
43 , 2134.

(2.3)

Again the algorithm terminates before all 4! = 24 permutations have been created. More specif-

ically, our greedy ruleset fails to proceed from 2134, since every swap gives a permutation that

already exists in the order.



Chapter 3

Loopless Change Sequence

Algorithms

Although greedy algorithms for generating Gray codes are straightforward to understand and imple-

ment, they are also highly inefficient in terms of computational complexity. During a single iteration

we may need to iterate through all k operations to create a new object, which results in an worst-case

Ω(k)-time per step. In addition, every past object needs to be stored in order to avoid transitions

to previous objects. If each object has size n and the set has cardinality m, then this leads to

Ω(nm)-space, which is often exponential. Fortunately, greedy Gray codes can often be generated

directly without storing previous objects.

This chapter provides loopless history-free algorithms for the binary reflected Gray code and

plain changes. Both algorithms generate the change sequence, which is the sequence of changes to

apply to create the Gray code. These change sequences turn out to be previously studied sequences

known as ruler sequences. Furthermore, existing algorithms can generate each successive entry in

these sequences in worst-case O(1)-time. We also introduce the first general definition for signed

ruler sequences, which will provide the basis for our new loopless Gray code algorithms for signed

permutations in Chapter 5.

3.1 Binary and Decimal Ruler Sequences

The Online Encyclopedia of Integer Sequences (OEIS) [44] defines the binary ruler sequence as the

“exponent of the highest power of 2 dividing n”. The sequence is also known as the binary carry

sequence, and it is indexed as entry A007814 in the OEIS. There is also an entry in the OEIS for

the sequence with every entry incremented by one: A001511. The start of these sequences appear

in Table 3.1 along with the corresponding values of n and thier largest power of two divisors.

The binary ruler sequence is closely related to both the lexicographic order of binary strings,

and the binary reflected Gray code. More specifically, each entry of sequence provides the number

of bits that changed in lexicographic order, as well as the individual bit index that changed in the

27
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

divisor 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1
power 20 21 20 22 20 21 20 23 20 21 20 22 20 21 20

A007814 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0
A001511 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

Table 3.1: The first fifteen entries of the binary ruler sequence A007814 and its incremented version
A001511. Each entry is explained by the value of n’s largest divisor that is a power of two.

BRGC. At first, the relationship between these three concepts may seem surprising. However, with

a little bit of reflection1 it follows quite naturally from the recursive definition the binary reflected

Gray code in (1.2). More specifically, the reflection in this formula ensures that only one bit changes

in Gray code. If we omit this reflection, then the formula instead generates lexicographic order, and

the transition between the two sublists involves a rollover of all of the bits. These observations are

illustrated in Table 3.2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A001511 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

lex 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
brgc 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000

Table 3.2: The relationship between the (incremented) binary ruler sequence A001511 and our two
familiar orders of binary strings: lexicographic and binary reflected Gray code. Note that each entry
in the sequence provides the number of bits that change in lexicographic order, and the specific bit
that changes in BRGC order when the strings are indexed as bnbn−1 · · · b1. For example, the middle
entry of 4 in A001511 corresponds to the transition from 0111 to 1000 in lexicographic order (i.e., 4
bits changed) and from 0100 to 1100 in the BRGC (i.e., bit b4 changed in b4b3b2b1).

The relationship between A001511 and the binary reflected Gray code is particular useful when

we want to efficiently generate the latter. This is because each successive entry in the sequence can

be generated in worst-case O(1)-time. Therefore, we can create a loopless algorithm for the BRGC

by generating its change sequence and applying these changes. The details of how to do this are

discussed in Section 3.4.

The binary ruler sequence can be understood as using bases (2, 2, . . . , 2). Similarly, the decimal

ruler sequence uses bases (10, 10, . . . , 10), and it is from this sequence where ruler sequences get

their name. More specifically, the (decimal) ruler sequence is named after the height of the tick

marks on a typical one meter rulers, where there are ticks for millimeters (mm), centimeters (cm)

and decimeters (dm). This is illustrated in Figure 3.1.

The next section considers ruler sequences with arbitrary bases. These sequences are fundamental

for understanding and generating many types of Gray codes, including those introduced in Chapter

2. In particular, the factorial bases (1, 2, . . . , n) and (n, n − 1, . . . , 1) are often associated with

permutation Gray codes [18] [32].

1Pun intended!
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1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 990
··· 

Figure 3.1: Illustrating rulers that given rise to the decimal ruler sequence 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, . . .
(top) and binary ruler sequence 1, 2, 1, 3, 1, 2, 1, 4, . . . (bottom).

3.2 Ruler Sequences

The ruler sequence with bases bn, bn−1, . . . , b1 can be recursively defined as following:

ruler(b1) = 1b1−1 =

b1−1 times︷ ︸︸ ︷
1, 1, . . . , 1 (3.1)

ruler(bn, bn−1, . . . , b1) = (s, n)bn−1, s where s = ruler(bn−1, bn−2, . . . , b1) (3.2)

Note that here commas denote the concatenation of join sequences, and exponents denotes times

of repetitions. That is, xy denotes y consecutive copies of x. There are bn copies of the previous

ruler subsequence s, and the sequence ends with s.

For example, ruler(4, 3) = 1,1,2,1,1,2,1,1,2,1,1 since ruler(3) = 1, 1. The length of the ruler

sequence is (
∏n

i=1 bi) − 1. In other words, each base bi causes the pattern to be repeated bi times,

with individual copies of i interspersed between them.

Ruler sequences are used to create mixed-radix words Wbn,bn−1,...,b1 , where wn · · ·w2w1 ∈Wbn,bn−1,...,b1

if 0 ≤ wi < bi for 1 ≤ i ≤ n. The number of these words is |Wbn,bn−1,...,b1 | =
∏n

i=1 bi = |ruler(bn, bn−1, . . . , b1)|+ 1.

When mixed-radix words are written in lexicographic order, the ruler sequence is its change

sequence. Each ruler sequence entry is the position that we perform ”operations” on mixed radix

words: they can be prefi rotations, prefix reversal, swapping, flipping, etc.

As previously mentioned, the binary ruler sequence ruler(2, 2, . . . , 2) (Oeis A001511 [44]) gives

the length of suffix that needs to be flipped when listing the binary numbers 011 · · · 1 to 100 · · · 0
in lexicographic order (or, in simpler terms, counting from smallest to largest). The case of binary

ruler sequence with length 3 is shown below:

000, 001, 010, 011, 100, 101, 110, 111 since ruler(2, 2, 2) = 1, 2, 1, 3, 1, 2, 1

3.3 Signed Ruler Sequences

Here we introduce a general definition of a signed ruler sequence. Such sequences have previously

been considered in special cases, including a signed version of the binary ruler sequence A164677.

However, we are unaware of any previous general definition.
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Our signed ruler sequence (ruler±) is a variation of ruler sequence. More specifically, it is equal

to the ruler sequence for the same base, but some of the entries are negative. We define it in a

similar way as ruler sequence except that every second copy of the previous ruler subsequence is

both reversed and sign complemented. When considering this definition, it is important to note

that standard ruler sequences are palindromes, so reversing various subsequences does not change

them. The placement of negative signs in our signed sequences will prevent signed ruler sequences

from being palindromes, so the reversal becomes relevant. (This is also a potential reason why these

sequences have not formally been defined or popularized in the literature.) In the following formal

definition, negative number −x will be denoted as x for notational simplicity, and reversal of a

sequence (or subsequence) s will be denoted as sR.

ruler±(b1) = 1b1−1 =

b1−1 times︷ ︸︸ ︷
1, 1, . . . , 1 (3.3)

ruler±(bn,bn−1, . . . ,b1) =

(s, n, sR, n)(bn−1)/2, s if bn is odd

(s, n, sR, n)(bn−2)/2, s, n, s if bn is even
(3.4)

It is notable that the subsequence s is repeated bn times in the n > 1 case, similar as in ruler

sequences. However, every second subsequence is reversed and complemented. For example,

ruler±(2, 3) = 1, 2, 91, 2, 1 (3.5)

ruler±(2, 3, 4) = 1, 2, 91, 2, 1, 4, 91, 92, 1, 92, 91, 4, 1, 2, 91, 2, 1, 4, 91, 92, 1, 92, 91

where the underline subsequences in ruler±(2, 3, 4) are complemented and reversed versions of

ruler(2, 3) in (3.5). The length of the signed ruler sequence is the same as the unsigned ruler

sequence, (
∏n

i=1 bi)− 1.

Signed ruler sequences provide more information for some Gray code changes. For example, the

signed binary ruler sequence entries provide not just the index i of the bit that changes, but also

whether the bit bi changes from 0 to 1 (entry +i) or from 1 to 0 (entry −i). Similarly, the signed

downstairs factorial ruler sequence provides the symbol to swap and the direction to swap it in when

generating plain changes. These details are discussed in the next section.

3.4 Loopless BRGC and Plain Changes

This section shows how we can generate BRGC and plain changes via ruler sequence in a loopless

way. When creating BRGC, we will use the binary ruler sequence ruler(2, 2, . . . , 2) (n copies). In

this case, each ruler sequence entry is the position (counting from least to most significant digit)

that is flipped to create the next word. For instance, we can use ruler(2, 2, 2) = 1, 2, 1, 3, 1, 2, 1 to

generate BRGC for n = 3:

000, 001, 011, 010, 110, 111, 101, 100. (3.6)
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Furthermore, if we use the signed version ruler±(2, 2, 2) = 1, 2, 91, 3, 1, 92, 91 then the signs tell

us the direction of each bit change. By computing each entry of the (signed) ruler sequence in

worst-case O(1)-time, we can update the associated binary string in the binary reflected Gray code

in worst-case O(1)-time, thereby completing a loopless algorithm.

For plain change order, we will use the signed ruler sequence ruler±(n, n−1, ..., 2, 1) (also referred

as the downstairs ruler sequence). Here the absolute value of each ruler sequence entry is the digit

to be swapped, and the sign indicates which direction to swap (+ is to the left and − is to the right).

To illustrate, for n = 3 we use ruler±(3, 2, 1) = +3,+3,+2,−3,−3:

12
←
3 , 1
←
3 2, 31

←
2 ,
→
3 21, 2

→
3 1, 213. (3.7)

By computing each entry of ruler±(n, n − 1, ..., 2, 1) in worst-case O(1)-time, we can update

the associated permutation in plain changes in worst-case O(1)-time, thereby completing a loopless

algorithm. Note that in this case we must also store and update the inverse of the current permuta-

tion, since otherwise we cannot identify the location of the particular symbol to swap in worst-case

O(1)-time.

Algorithm 5 Generating BRGC and plain changes using ruler sequences. BRGC uses the ruler
sequence ruler(2, 2, . . . , 2) (n copies), while plain change order uses the signed ruler sequence
ruler±(n, n − 1, ..., 2, 1). Focus pointers are stored in f . d resembles the directions of change.
flip(j) resembles flipping the j-th symbol in the binary string. swap(j) resembles swapping j to
the left when j > 0, and swapping j to the right when j < 0. The overall algorithm is loopless if
each function runs in worst-case O(1)-time.

1: procedure LooplessBRGC(s)
2: a1 a2 · · · an ← 0 0 · · · 0
3: f1 f2 · · · fn+1 ← 1 2 · · · n+1
4:

5: visit(s)
6: while f1 ≤ n do
7: j ← f1
8: f1 ← 1
9: aj ← aj + 1

10: s← flip[j](s)
11: visit(j, s)
12: if aj = 1 then
13: aj ← 0
14: fj ← fj+1

15: fj+1 ← j + 1

1: procedure LooplessPlainChange(s)
2: a1 a2 · · · an ← 0 0 · · · 0
3: f1 f2 · · · fn+1 ← 1 2 · · · n+1
4: d1 d2 · · · dn ← 1 1 · · · 1
5: visit(s)
6: while f1 ≤ n do
7: j ← f1
8: f1 ← 1
9: aj ← aj + dj

10: s← swap[dj · j](s)
11: visit(dj · j, s)
12: if aj ∈ {0, j − 1} then
13: dj ← −dj
14: fj ← fj+1

15: fj+1 ← j + 1



Chapter 4

Greedy Gray Codes for Signed

Permutations

In this chapter, we attempt to create Gray codes for signed permutations using the greedy Gray

code algorithm from Chapter 2. In that chapter, we saw that Gray codes of permutations are often

inspired by different physical models of the permutation. More specifically, certain operations are

more natural when considering a specific physical model. For example, prefix-reversals are natural

when visualizing stacks of pancakes , while prefix-rotations are natural when visualizing marbles

on a ramp . With this in mind, we start by selecting a physical model for signed permutations:

two-sided ribbons. This model suggests the operations that we will consider for our Gray codes.

The operations include the types of twists and swaps that someone would perform while braiding.

We experimented with 20 different rulesets. Each ruleset uses two types of operations selected

from flips (1-twists), twists (2-twists), and swaps (unsigned 2-twists). Empirically, we found that

a dozen of our rulesets worked up to n = 8. We analyzed each order and identified three distinct

types of correctness proofs.

Aesthetically, we found Experiment 8 to be particularly pleasing both visually and mathemat-

ically. The start of the n = 4 order is visualized in Figure 4.1. The familiar zig-zag pattern from

in plain changes (see Figure 2.2) is prominent, except that the symbols are complemented (i.e., the

ribbons are turned over) along each pass. We named the order twisted plain changes in [47].

···

1 1 1 94 94 1 1 1 3 3 3 94 94 3 3 3 92 92 92 94 94 92 92 92 92
2 2 4 91 91 4 93 93 91 91 4 93 93 4 2 2 93 93 4 2 2 4 91 91 91
3 94 92 92 3 3 94 92 92 94 1 1 92 92 94 1 1 94 3 3 1 1 94 3 3
4 93 93 93 2 2 2 4 4 2 2 2 91 91 91 4 4 91 91 91 93 93 93 4 94

Figure 4.1: Twisted plain changes twisted(4) (experiment 8) up to its 25th entry.

32
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4.1 Two-Sided Ribbons: Twists and Swaps

Now we introduce our physical model for signed permutations. A two-sided ribbon appears to be

polished on one side and matte on the other side1 and we model a n-bit signed permutation using

n two-sided ribbons in parallel.

Given this physical model, a basic operation that can be performed is a twist. More specifically,

a k-twist turns over k neighboring ribbons and reverses their order, as visualized in Figure 4.2 for

k = 1, 2. 1-twists are also referred as flips as only one ribbon is turned over. A twist performs a

complementing substring reversal, or simply a reversal [24], on the signed permutation.

1 1
2 -2
3 3
4 4

(a) The 1-twist changes 1 2 3 4 into 1 2 3 4.

1 1
-2 -3
3 2
-4 4

(b) The 2-twist changes 1 2 3 4 into 1 3 2 4.

Figure 4.2: Two-sided ribbons with distinct positive (i.e., glossy) and negative (i.e., matte) sides
running in parallel. A k-twist reverses the order of k neighboring ribbons and turns each of them
over. This is shown in (a) for k = 1 (which is also known as a flip), and in (b) for k = 2. Note
that swap is an unsigned 2-twist, meaning that the relative order of two neighboring ribbons are
reversed, but neither of the ribbons are turned over.

4.1.1 Twist Properties

Now we consider some basic properties of twists on signed permutations. These properties will be

useful when we consider our greedy experiments.

Recall that S±n is the set of signed permutations over [n] (see Section 1.3). A k-twist is said to

have even length or odd length depending on the parity of k. The following remark states that the

number of negative symbols in a signed permutation changes by an even amount when applying an

even-length twist. In general, this is due to the fact each symbol in the twist switches from positive

to negative or vice versa, and an even number of ±1 values is even. This point will be useful when

we consider the types of twists that can be used in a twist Gray code in Section 4.2.

Remark 10. Suppose that α ∈ S±n and β ∈ S±n differ by a k-twist for some even k. Then the

number of negative symbols in α and β have the same parity.

The following remark will also be useful later in this chapter.

Remark 11. Two signed permutations π, π′ ∈ S±n differ by a k-twist starting at index i, if and only

if, their negations −π,−π′ ∈ S±n differ by a k-twist starting at index i.

Another basic operation on two-sided ribbons is a swap. A swap exchanges two neighboring

ribbons (without turning either ribbon over). Note that this operation is exactly the same as swap

in unsigned permutations (in contrast, twists are more or less exclusive for signed permutations).

1This type of ribbon is referred as single face as only one side is polished.
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4.2 Restrictions on Operations

Before considering our greedy experiments, it is helpful to rule out certain combinations of operations

that cannot create a Gray code. For example, note that 2-twists and swaps do not change the parity

of the number of negative symbols in a signed permutation. More specifically, swaps do not change

the sign of any symbol, and 2-twists change the sign of two symbols, thus changing the number of

negative symbols by −2 or 0 or +2. For this reason, it is impossible to create a Gray code for S±n

using only swaps and 2-twists, and for this reason we will not consider experiments using pairs of

these operations. The following lemma provides the same statement for even-length twists.

Lemma 1. If L is a twist Gray code of S±n for some n ≥ 1, then at least one pair of consecutive

signed permutations in L differ by a k-twist for some odd k.

Proof. Note that α = 123 · · ·n ∈ S±n cannot be transformed into β = 123 · · ·n ∈ S±n via any

sequences of even-length twists. This is because α has an even number of negative symbols, β has

an odd number of negative symbols, and by Remark 10 every even-length twist does not change the

parity of the number negative symbols.

However, as the next section 4.3 indicates, 1-twists and 2-twists are sufficient when used to-

gether, and there exist other combinations of two operations that are capable of generating signed

permutations.

4.3 Experiments with 1-Twists, 2-Twists and Swaps

Although any k-twist are potential candidates of components of greedy algorithm for generating

twist Gray codes, we only consider 1-twists, 2-twists and swaps in our experiments on searching for

such greedy algorithms.

We list our experiments in Table 4.1. Each experiment is composed of 2 greedy rules, and the

rule order indicates how the two rules are prioritized. For example, in experiment 1, we attempt to

1-twist the largest digit (absolute value) in the signed permutation. If this generate a permutation

we have already generated, then we 1-twist the second largest digit. If all 1-twists fail to create a new

signed permutation, we swap the largest digit with its neighboring digit. By default we prioritize

swapping to the left over to the right; nevertheless, if the target digit is on the rightmost position,

we can only swap to the left; similarly if the target digit is on the leftmost position we can only swap

to the right. For another example, in experiment 4, we attempt to swap the largest digit with its

neighboring digit. If that is not possible, we attempt to 1-twist the largest digit. Then we attempt

to swap the second largest digit (thus, in a “zig-zag” prioritization).

From our experiment results we notice that all experiments involving swapping or 2-twisting

the rightmost symbol fail to generate a proper Gray code of signed permutations. This is due to

the fact that “swapping the rightmost” cannot generate a Gray code under the context of simple

permutations (recall 9). In contrast, we observe that both flipping the rightmost symbol or flipping

the largest symbol can create algorithms that generate Gray codes of signed permutations.
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Experiment No. Type 1 Type 2 Type order
1 1-twist largest swap largest after
2 swap largest 1-twist largest after
3 1-twist largest swap largest zigzag
4 swap largest 1-twist largest zigzag
5 1-twist rightmost swap largest after
6 swap largest 1-twist rightmost after
7 1-twist largest 2-twist largest after
8 2-twist largest 1-twist largest after
9 1-twist rightmost 2-twist largest after
10 2-twist largest 1-twist rightmost after
11 1-twist largest 2-twist largest zigzag
12 2-twist largest 1-twist largest zigzag
13 1-twist largest swap rightmost after
14 swap rightmost 1-twist largest after
15 1-twist largest swap rightmost zigzag
16 swap rightmost 1-twist largest zigzag
17 1-twist largest 2-twist rightmost after
18 2-twist rightmost 1-twist largest after
19 1-twist largest 2-twist rightmost zigzag
20 2-twist rightmost 1-twist largest zigzag

Table 4.1: Experiments on greedy algorithms for Gray codes of signed permutations. For example,
Experiment 1 prioritizes 1-twisting the values n, n−1, . . . , 1 and if none of these operations succeed,
then it prioritizes swapping the values n, n− 1, . . . , 1. On the other hand, Experiment 3 prioritizes
1-twisting value n, then swapping value n, then 1-twisting value n− 1, then swapping value n− 1,
and so on in a zigzag or interlaced fashion.

We tested these 20 experiments on n = 3, 4, 5, 6, 7, 8. Experiments 1-12 successfully yielded all

signed permutations of the corresponding length without repetitions. Experiments 13-20 terminated

prematurely (i.e. did not generate all signed permutations). It is notable that experiments 13-20 all

contain swaps or 2-twists on the rightmost digit. We conjecture that this type of rule will cause the

greedy algorithm to halt prematurely, just as rightmost swaps were shown to fail for permutations

in Section 2.5.

4.4 Selected Proofs

When analyzing the data from our 12 successful experiments, we found that there were three distinct

types of patterns that arose.

• When prioritizing 1-twists before other operations, we found that the Gray codes partitioned

into blocks of length 2n. Each block has the same underlying permutation, and the signs are

complemented in all possible ways. In other words, the blocks traverse a subgraph in the

flip graph that is isomorphic to an n-dimensional cube (see Figure 1.4) but with each vertex

being prescribed the same permutation. We illustrate this type of pattern by considering

Experiment 7.
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• When prioritizing 2-twists or swaps before other operations, we found that the Gray codes

partitioned into blocks of length n!. Each block traverses a subgraph in the flip graph that is

isomorphic to an n-dimensional permutohedron (see Figure 1.7). However, when 2-twists are

used, the signs of each permutation are perturbed in a manner that requires some consideration.

We illustrate this type of pattern by considering Experiment 8.

• When prioritizing operations in a zigzag or interlaced fashion, we found that the Gray codes

partitioned into blocks of length n or 2n. Each block involves zigging or zagging or zigzagging

the value ±n through successive signed permutations (or a modified versions of them) in

the order for S±n−1. In other words, the blocks utilize a type of local recursion found in

the definition of plain changes found in Section 1.1.3. We illustrate this type of pattern by

considering Experiment 11.

Now we provide sample proofs and illustrations for the validity of Experiments 7, 8 and 11.

Algorithm 6 Greedy algorithm for generating twisted plain changes twisted(n, T ).

1: procedure Twisted(n, T ) ▷ Signed permutations are visited in twisted(n) order
2: π ← +1 +2 · · · +n ▷ Starting signed permutation s = π ∈ S±n
3: visit(π) ▷ Visit π for the first and only time
4: S = {π} ▷ Add π to the visited set
5: i← 1 ▷ 1-based index into T ; T [1] =

←−
tn will 2-twist n left

6: while i ≤ 3n− 2 do ▷ Index i iterates through the 3n− 2 twists in T
7: π′ ← T [i](π) ▷ Apply the ith highest priority twist to create π′

8: if π′ /∈ S then ▷ Check if π′ is a new signed permutation
9: π ← π′ ▷ Update the current signed permutation π

10: visit(π) ▷ Visit π for the first and only time
11: S = S ∪ {π} ▷ Add π to the visited set
12: i← 1 ▷ Reset the 1-based index into T
13: else
14: i← i + 1 ▷ If π′ ∈ S, then consider the next twist

Theorem 1. Experiment 7 visits a twist Gray code of signed permutations. That is, twisted(n, T )

where T = tn, . . . , t2, t1,
←−
tn,
−→
tn,
←−
tn−1,

−→
tn−1, . . . ,

←−
t2,
−→
t2 orders S±n .

Proof. Since 1-twists are prioritized before 2-twists, the algorithm proceeds in the manner as BRGC

Gray codes (with negative signs acting as the role of 1’s in BRGC) and preserves the absolute value of

numbers at each position of the permutation until a 2-twist changes them. Consequently, it generates

sequences of 2n signed permutations using 1-twists until a single 2-twist is required. It is notable

that per the patterns of BRGC, in each block of 2n signed permutation, the last permutation always

differs from the first by changing the sign of 1. We should emphasize that since our prioritization is

based on values rather than positions, this BRGC structure will flip 1 rather than the value of the

first position.

As a result, we are able to traverse through all permutations resulting from a given order of

absolute values of 1 to n. We also know that we are able to reach all order of absolute values

through 2-twists from plain change order, which are just swaps when only acting on absolute values.
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Hence the algorithm traverses through all 2n · n! signed permutations. More specifically, the order

generated by the algorithm appears in Figure 4.4.

Theorem 2. Experiment 8 visits a twist Gray code of signed permutations. That is, twisted(n, T )

where T =
←−
tn,
−→
tn,
←−
tn−1,

−→
tn−1, . . . ,

←−
t2,
−→
t2, tn, . . . , t2, t1 orders S±n .

Proof. Since 2-twists are prioritized before 1-twists, the algorithm proceeds in the same manner as

plain changes, except for the signs of the visited objects. As a result, it generates sequences of

n! signed permutations using 2-twists until a single 1-twist is required. One caveat is that the first

signed permutation in a sequence alternates between having the underlying permutation of 1234 · · ·n
or 2134 · · ·n. This is due to the fact that plain changes starts at 1234 · · ·n and ends at 2134 · · ·n
and swaps 12 to 21 one time. As a result, 12 will be inverted while traversing every second sequence

of length n!, and these traversals will be done in reflected plain changes order by Remark 7. The

order generated by the algorithm is illustrated in in Figure 4.5.

Note that the proof of Theorem 2 can be largely used for proving the validity of other greedy

algorithms that prioritize swaps or 2-twists over 1-twists via some minor changes, including Experi-

ment 2, 6, 8, 10. These algorithms execute in the sequence of plain changes when 2-twists or swaps

are used until 1-twists are required. Hence they all appear to be a traversal through 2n plain changes

blocks.

Finally we attempt to prove the validity of algorithms that involve zig-zagging of 2-twists/swaps

and 1-twists. Such algorithms are much harder to understand compared with the rest, which either

traverse through plain change blocks or BRGC blocks.

Theorem 3. Experiment 11 visits a twist Gray code of signed permutations. That is, twisted(n, T )

where T = tn,
←−
tn,
−→
tn, tn−1,

←−
tn−1,

−→
tn−1, . . . , t2,

←−
t2,
−→
t2, t1 orders S±n .

Definition 2. If π = p1p2 · · · pn−1 ∈ S±n−1 and m ∈ {−n, n}, then each of the following lists contains

2n distinct signed permutations in S±n .

±zig(π,m) = p1 p2 · · · pn−2 pn−1 m,

p1 p2 · · · pn−2 pn−1 m,

p1 p2 · · · pn−2 m pn−1,

p1 p2 · · · pn−2 m pn−1,
...

...
...

...
...

p1 m p2 · · · pn−2 pn−1,

p1 m p2 · · · pn−2 pn−1,

m p1 p2 · · · pn−2 pn−1,

m p1 p2 · · · pn−2 pn−1
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±zag(m,π) = mp1 p2 · · · pn−2 pn−1,

m p1 p2 · · · pn−2 pn−1,

p1 m p2 · · · pn−2 pn−1,

p1 m p2 · · · pn−2 pn−1,
...

...
...

...
...

p1 p2 · · · pn−2 m pn−1,

p1 p2 · · · pn−2 m pn−1,

p1 p2 · · · pn−2 pn−1 m,

p1 p2 · · · pn−2 pn−1 m

Remark 12. Let π ∈ S±n−1 be a signed permutation over [n− 1]. Then

±zig(π, n) = reflect(±zag(−n,−π)) (4.1)

In other words, zigging n through a signed permutation gives the reflected list of zagging −n through

the negative version of the signed permutation. In particular, the two lists contain the same signed

permutations...

Lemma 2. The set

A = {±zig(π, n) | π ∈ S±n−1} (4.2)

exactly covers all permutations in S±n . In other words, zigging n through each signed permutation of

[n− 1] gives every signed permutation of [n] exactly once.

Proof. Note that each signed permutation π ∈ S±n−1 corresponds to 2n different signed permutations

in ±zig(π, n). Furthermore, we see that all those permutations are mutually different: all signed

permutations in ±zig(π, n) keep the relative order of numbers in π, so ±zig(π, n) and ±zig(ϵ, n) have

no common elements if π ̸= ϵ. Hence |A| = 2n · 2n−1(n− 1)! = 2n · n! = |S±n |, and A = S±n .

Definition 3. The ±-zig-zag order ±ZigZag(n) is inductively as

±ZigZag(n) = ±zig(π1, n),±zag(−n,−π2),

± zig(π3, n),±zag(−n,−π4),

. . . ,

± zig(πm−1, n),±zag(−n,−πm)

(4.3)

where ±ZigZag(n− 1) = π1, π2, . . . , πm with base case ±ZigZag(1) = 1, 1.

Theorem 4. ±ZigZag(n) is a k-twist Gray code of S±n for k ∈ {1, 2}.

Proof. First note that±ZigZag(n) contains the correct number of strings. This is because±ZigZag(n)

consists of one sublist per string in ±ZigZag(n− 1) by Definition 3, and each sublist has length 2n

by Definition 2. Thus, the lengths of these lists follow the recurrence

| ± ZigZag(n)| = 2n · | ± ZigZag(n− 1)| with | ± ZigZag(1)| = 2 (4.4)
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so | ± ZigZag(n)| = 2nn! = |S±n | as desired. Furthermore, no signed permutation appears twice in

±ZigZag(n). This can be seen by applying Remark 12 and reflecting every second sublist. More

specifically, we can rewrite the contents of ±ZigZag(n) as follows

± zig(π1, n),±zig(π2, n),

± zig(π3, n),±zig(π4, n),

. . . ,

± zig(πm−1, n),±zig(πm, n)

since each sublist ±zag(−n,−π2k) contains the same set of strings as ±zig(π2k, n). As there are no

duplicates in the above list, there are no duplicates in ±ZigZag(n).

Now we prove that successive signed permutations in ±ZigZag(n) differ by a 1-twist or a 2-twist

via induction on n. When n = 1, we have ±ZigZag(1) = 1, 1 so the only pair of successive signed

permutations differ by a 1-twist. Suppose that successive signed permutations in ±ZigZag(n) differ

by a 1-twist or a 2-twist for some n = k. Now consider ±ZigZag(k + 1). Note that each successive

signed permutations within an individual sublist of the form ±zig(πi, n) differ by a 2-twist or 1-twist

involving n or −n, and this is true for sublists of the form ±zag(−n,−πi) as well. Therefore, we need

only consider successive permutations spanning two such sublists. There are two cases to consider.

• When i is odd, we need to consider the transition from ±zig(πi, n) to ±zag(−n,−πi+1).

The last signed permutation in ±zig(πi, n) is −n − πi and the first signed permutation in

±zag(−n,−πi+1) is −n−πi+1. By induction, πi and πi+1 differ by a 1-twist or 2-twist, so −πi

and −πi+1 also differ by a 1-twist or 2-twist by Remark 11, and hence, so too do −n− πi and

−n− πi+1.

• When i is even, we need to consider the transition from ±zag(−n,−πi) to ±zig(πi+1, n).

The last signed permutation in ±zag(−n,−πi) is πin and the first signed permutation in

±zig(πi+1, n) is πi+1n. By induction, πi and πi+1 differ by a 1-twist or 2-twist, so too do πin

and πi+1n.

Now we show that the Gray code is cyclic.

Remark 13. first(±ZigZag(n)) = 123 · · ·n and last(±ZigZag(n)) = 123 · · ·n.
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π1 = +1 + 2 + 3
π2 = +1 + 2− 3
π3 = +1 + 3− 2
π4 = +1− 3− 2
π5 = +3− 1− 2
π6 = −3− 1− 2

...

+1 + 2 + 3 + 4
+1 + 2 + 3− 4
+1 + 2 + 4− 3
+1 + 2− 4− 3
+1 + 4− 2− 3
+1− 4− 2− 3
+4− 1− 2− 3
−4− 1− 2− 3


±zig(π1, 4)

−4− 1− 2 + 3
+4− 1− 2 + 3
−3− 4− 1− 2
−3 + 4− 1− 2
+2− 3− 4− 1
+2− 3 + 4− 1
+1 + 2− 3− 4
+1 + 2− 3 + 4


±zag(4, π2)

+1 + 3− 2 + 4
+1 + 3− 2− 4
+1 + 3 + 4 + 2
+1 + 3− 4 + 2
+1 + 4− 3 + 2
+1− 4− 3 + 2
+4− 1− 3 + 2
−4− 1− 3 + 2


±zig(π3, 4)

−4− 1− 2 + 3
+4− 1− 2 + 3
−3− 4− 1− 2
−3 + 4− 1− 2
+2− 3− 4− 1
+2− 3 + 4− 1
+1 + 2− 3− 4
+1 + 2− 3 + 4


±zag(4, π2)

+3− 1− 2 + 4
+3− 1− 2− 4
+3− 1 + 4 + 2
+3− 1− 4 + 2
+3 + 4 + 1 + 2
+3− 4 + 1 + 2
+4− 3 + 1 + 2
−4− 3 + 1 + 2


±zig(π5, 4)

−4 + 3 + 1 + 2
+4 + 3 + 1 + 2
−3− 4 + 1 + 2
−3 + 4 + 1 + 2
−3− 1− 4 + 2
−3− 1 + 4 + 2
−3− 1− 2− 4
−3− 1− 2 + 4


±zag(4, π6)

−3− 1 + 2 + 4
+3− 1 + 2 + 4

Figure 4.3: Illustrating the zig-zag pattern that extends experiment 11 from n = 3 to n = 4. (The
total length of the n = 4 order is n! · 2n = 24 · 16 = 384.)
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Figure 4.4: The start of the order for Experiment 7 when n = 4 is 1234, 1234, . . ..
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Figure 4.5: The start of the order for Experiment 8 when n = 4 is 1234, 1243, . . ..



Chapter 5

Loopless Change Sequence

Algorithms for Signed

Permutations

While our greedy algorithms for creating signed permutation Gray codes in Section 4.3 have simple

descriptions, these descriptions do not translate directly into efficient algorithms. This is due to

the fact that the greedy Gray code algorithm explicitly stores its full history (i.e., every previously

generated object) in order to decide which object to generate next. Fortunately, Gray codes obtained

with the greedy algorithm can often be generated directly using history-free implementations that

do not need to store the previous objects. Previous examples of this include prefix-reversal (or ‘flip’)

Gray codes for permutations [66, 16]1, signed permutations [53, 54], and colored permutations [7, 6],

as well as basis-exchange Gray codes for matroids [39] which will be discussed in Chapter 6.

In this chapter we provide loopless history-free implementations for all 12 of our signed permu-

tation Gray codes from Chapter 4. In each case, we will see that the Gray code’s change sequence

can be described using signed ruler sequences that were introduced in Section 3.3. The loopless

implementations are then based on generating each successive entry in the associated signed ruler

sequence in worst-case O(1)-time.

5.1 Signed Change Sequences for Experiments

In light of the inefficiency of greedy algorithms for generating Gray codes for signed permutations,

we seek other types of algorithms that are able to generate them without using exponential space and

O(n) time for each object. Luckily, greedy Gray codes can often be generated without remembering

previous objects. We utilize signed ruler sequences as introduced in Section 3.3 to looplessly generate

the Gray codes. We should note there are also loopless algorithms for non-greedy Gray codes with

ruler sequences [28] [18].

1[16] was published under pseudonyms inspired by Harry Dweighter (“harried waiter”) [31].

42
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We experimented on the 12 algorithms proposed in Section 4.3 that are generated by signed ruler

sequences instead. The signed ruler sequences utilized in each algorithm is shown in Table 5.1.

Experiment No. Ruler Sequence Bases
1 1, 2, ..., n-1, n, 2, 2, ..., 2, 2
2 2, 2, ..., 2, 2, 1, 2, ..., n-1, n
3 1, 2, 2, 2, 3, 2, ..., n-1, 2, n, 2
4 2, 1, 2, 2, 2, 3, ..., 2, n-1, 2, n
5 1, 2, ..., n-1, n, 2, 2, ..., 2, 2
6 2, 2, ..., 2, 2, 1, 2, ..., n-1, n
7 1, 2, ..., n-1, n, 2, 2, ..., 2, 2
8 2, 2, ..., 2, 2, 1, 2, ..., n-1, n
9 1, 2, ..., n-1, n, 2, 2, ..., 2, 2
10 2, 2, ..., 2, 2, 1, 2, ..., n-1, n
11 1, 2, 2, 2, 3, 2, ..., n-1, 2, n, 2
12 2, 1, 2, 2, 2, 3, ..., 2, n-1, 2, n

Table 5.1: Experiments on greedy algorithms and the bases of their corresponding signed ruler
sequences. (Note that the bases are listed in reverse in our programs in the appendix.)

We implement the changes incurring in the signed permutation sequence in the following way:

Lemma 3. The change sequence for any greedy algorithm twisted(n, T ) that prioritizes operation 1

over operation 2 as specified in Section 4.1 can be determined from its corresponding signed ruler

sequence in Table 5.1 in the following way: +j and −j respectively performs operation 1 on value

n−j+1 to the left and right for 1 ≤ |j| ≤ n; +j and −j respectively performs operation 2 on value

2n−j+1 down and up for n < |j| ≤ 2n.

5.2 Loopless Algorithms

Algorithm 7 contains procedures for generating Gray codes. Their changes follow a signed ruler

sequence with any bases b. The start object is s and the change functions are in fns. The ruler

sequence is generated one entry at a time, and the current object is updated and visited accordingly.

More specifically, if j is the next entry, then fns[j] is applied to s to create the next object. The

pseudocode is adapted from Knuth’s loopless reflected mixed-radix Gray code Algorithm H [32].

5.3 Implementation of Loopless Algorithms

In order to implement of Algorithm 7, we generate each successive entry in the signed ruler sequence

that corresponds to a specific set of prioritization rules. We then utilize Lemma 3 to determine

which symbol to change and how to change the signed permutation. Note that in order to keep our

operations in O(1) time, we need to keep track of the position of each symbol in the underlying

permutation. In other words, we need to store the inverse of the underlying permutation in an

additional array. Furthermore, each operation should change both the signed permutation and the

underlying permutation’s inverse array.
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Algorithm 7 Generating Gray codes using ruler sequences with bases b. The fns modify ob-
ject s and are indexed by the sequence. For example, if b = 3, 2 then RulerGrayCode±(b) vis-
its ruler±(2, 3) = 1, 1, 2,−1,−1 alongside a Gray code that starts s and applies fns with indices
1, 1, 2,−1,−1. The signed version also generates the reflected mixed-radix Gray code mix(b) in a,
with the d values providing ±1 directions of change. So in the previous example the mixed-radix
words 00, 10, 20, 21, 11, 10 are generated in a. Focus pointers are stored in f . The overall algorithm
is loopless if each function runs in worst-case O(1)-time. Note that the indexing is reversed with
respect to Section 3.2 with b = b1, b2, . . . , bn.

1: procedure RulerGrayCode(b, s, fns)
2: a1 a2 · · · an ← 0 0 · · · 0
3: f1 f2 · · · fn+1 ← 1 2 · · · n+1
4: b1 b2 · · · bn ← 2 2 · · · 2
5: visit(s)
6: while f1 ≤ n do
7: j ← f1
8: f1 ← 1
9: aj ← aj + 1

10: s← fns[j](s)
11: visit(j, s)
12: if aj = bj − 1 then
13: aj ← 0
14: fj ← fj+1

15: fj+1 ← j + 1

1: procedure RulerGrayCode±(b, s, fns)
2: a1 a2 · · · an ← 0 0 · · · 0
3: f1 f2 · · · fn+1 ← 1 2 · · · n+1
4: d1 d2 · · · dn ← 1 1 · · · 1
5: visit(s)
6: while f1 ≤ n do
7: j ← f1
8: f1 ← 1
9: aj ← aj + dj

10: s← fns[dj · j](s)
11: visit(dj · j, s)
12: if aj ∈ {0, bj − 1} then
13: dj ← −dj
14: fj ← fj+1

15: fj+1 ← j + 1

Both Python and C++ implementations are included in Appendix. Since Python is known to

integrate lambda functions with abundant functionality, which are essential for implementing the

changes from signed ruler sequences, the Python code appears to be more concise. On the contrary,

C++ has only introduced lambda features starting from C++11, and corresponding functionality

is still limited. Consequently, complicated functional types have to be injected. For details refer to

the Appendix.



Chapter 6

Spanning Tree Gray Codes

This chapter extends our previous work on Gray codes from relatively elementary combinatorial

objects (i.e., binary strings, permutations, and signed permutations) to much more varied and

elusive combinatorial objects.

We start by describing a recently discovered greedy Gray code algorithm for generating the bases

of any matroid [39]. This algorithm is incredibly broad and flexible, but its output can be difficult

to understand. One reason is that the changes made by the algorithm do not seem to follow a simple

pattern. More specifically, the change sequences do not appear to be ruler sequences (or signed ruler

sequences), so the approach to creating loopless algorithms seen in Chapter 5 cannot be used for

the algorithms from [39], at least not in general.

We then consider several specializations of the generic algorithm for a special case of matroid

bases: the spanning trees of the complete graph Kn. Don Knuth is especially interested in obtaining

a simple Gray code for this special case, and he includes it as an open problem (with difficulty rating

46/50) in The Art of Computer Programming [33]. The problem is shown in Figure 6.1. (The term

“revolving door” refers to a Gray code in which one edge is removed and one edge is added, and

this is a property that is guaranteed by [39].)

Figure 6.1: Don Kunth’s question on a “simple” revolving door algorithm for listing all spanning
trees of Kn

Although he does not explicitly state it in his open problem, one could ultimately hope for a

loopless Gray code algorithm. While we do not provide such an algorithm here, we do find that

certain choices lead to outputs that may be easier to understand than others. In particular, we

identify a set of choices that leads to a cyclic Gray code for n ≤ 9. We hope that future work will

give an algorithm that can claim Knuth’s trophy.

45
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6.1 Matroids

Matroids [45] generalize the notion of independence found in various areas of mathematics, including

graph theory and linear algebra. More specifically, a matroid is a pair (E, I) where E is a finite set

of elements, and I is a subset of its power set P(T ) (i.e., I is a set of subsets of E). Each member

of I (i.e., one of the selected subsets of E) is said to be independent and overall the independent

subsets must satisfy the following conditions:

1. ∅ ∈ I.

2. If A ∈ I and B ⊆ A, then B ∈ I.

3. If A,B ∈ I and B ⊊ A, then ∃x ∈ A\B with B ∪ {x} ∈ I.

These three conditions ensure that maximal independent sets can be generated by a simple and

flexible greedy algorithm starting from ∅:

Repeatedly add any element that maintains independence.

Stop when no more elements can be added.

Less obviously, every maximal independent set has the same size in a given matroid. In other words,

all maximal independent sets are maximum independent sets. Each maximum independent set is

called a basis and collectively they are called the bases. Specific matroids (E, I) include the following.

• In graph theory, the set of edges in a graph form E and a subset of edges is in I if it forms a

forest (i.e., there is no cycle). The maximum independent sets are the spanning trees of the

graph.

• In abstract algebra, the set of all vectors in a vector space form E, and a subset of vectors is

in I if it is linearly independent. The maximum independents sets form a basis of the vector

space.

6.1.1 Greedy Basis-Exchange Gray Codes

Recently, a flexible approach for generating the bases of any matroid was discovered [39] (see also

[41]). The bases are generated so that successive bases differ by a basis exchange. This means that a

single element is removed and a single element is added to create the next basis. In other words, the

approach generates basis exchange Gray codes for any matroid. For example, in the case of spanning

trees, the Gray codes have the property that a single edge is removed and a single edge is added

in order to create the next spanning tree. These Gray codes are also known as revolving door Gray

codes for spanning trees.

Fittingly, the newly discovered approach is a simple and flexible greedy algorithm1. Given a

matroid (E, I) the algorithm can be summarized as follows.

• Choose an initial basis B0 ∈ I.

1This means that there are simple and flexible greedy algorithms for generating one basis of a matroid, or every
basis of a matroid.
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• Choose an ordering of the elements ⟨e1, e2, . . . , em⟩ where |E| = m and E = {e1, e2, . . . , em}.

• Start the Gray code at B0.

• From the most recently added basis perform any basis exchange on elements ei and ej that (a)

minimizes max(i, j), and (b) results in a new basis to add to the Gray code. If no such choice

of i and j exists, then stop.

Amazingly, this approach always works. That is, it always terminates with a Gray code containing

every basis of the matroid.

The approach is flexible because it can create many different Gray codes for a given matroid. More

specifically, the algorithm can start from any basis, and it can use any ordering (or prioritization)

of the elements in E. Furthermore, each exchange can offer a choice: the largest-indexed element

is fixed (i.e., it is completely determined by the previous steps of the algorithm) but amongst the

valid choices the smaller-indexed element can be chosen arbitrarily. To create a specific Gray code,

one must choose the initial basis, the ordering of the elements, and a process for breaking ties on

smaller-indexed elements. The tiebreaker rules considered in [39] include minimizing or maximizing

the smaller-indexed elements.

There are other well-known methods for efficiently generating the bases of a matroid in non-Gray

code orders. For example, see the reverse search approach in [2].

6.2 Generating Spanning Trees

Spanning trees are fundamental in many algorithm fields, including path algorithms, network algo-

rithms, etc. Efficient methods of generating all spanning trees of a given graph have been the focus

of many researchers. Here we discuss two well-known methods and the special case of generating

spanning trees of the complete graph.

6.2.1 Contraction and Deletion

Wilhelm Feussner developed a systematic way to enumerate the spanning trees of any graphs G in

1902 [17]: If edge e = (u, v) ∈ G, then it is either included in G or not. If it is included, then we

can contract e into a single vertex and consider the spanning tree of the resulting graph Ge. If it is

not included, then we simply consider the spanning tree of G \ e which is G with edge e removed.

Hence, we arrive at the following recursive relationship regrading S(G), the set of all spanning trees

of G:

S(G) = {T ∪ {e} | T ∈ S(Ge)} ∪ S(G \ e) (6.1)

Another way of stating (6.1) is that the spanning trees of G are obtained by generating the

spanning trees of G’s contraction minor and deletion minor on edge e. Also note that (6.1) does

not explicitly generate a Gray code order of the spanning trees. However, it could be possible to
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create a Gray code by carefully choosing which edge to perform the minor on, and whether to do

contraction or deletion first.

Malcolm Smith developed an elegant “revolving-door” (i.e., edge exchange) Gray code algorithm

for the spanning trees of G based on 6.1 (see Algorithm S in [33]). For G containing n vertices, a

“near tree” {e1, e2, · · · , en−2} that is a set of n− 2 edges with no cycles is determined. Recursively

consider all spanning trees of Ge1 , and each of these trees appended with e1 is a spanning tree of

G. After listing them, the algorithm is continued by using the last spanning tree of Ge1 as the new

“near tree” and searching for the spanning trees of G \ e1. Note that before the procedure starts,

G \ e1 must be verified to be connected; if not then switch for a different edge. Figure 6.2 - 6.4

shows an example of how deletion and contraction are implemented.

e1

Figure 6.2: A graph G for illus-
trating concepts in Feussner’s
enumeration of spanning trees

Figure 6.3: G \ e1, with e1
deleted from G

e1

Figure 6.4: Ge1 , with e1 con-
tracted to a vertex

6.2.2 Spanning Trees of Complete Graphs

The complete graph Kn has n vertices and an edge between every pair of vertices. Notably, Kn has

nn−2 different spanning trees, and the set containing them are referred as Tn. Figure 6.5 illustrates

T4, all 42 = 16 spanning trees of complete graph K4.

Though Smith’s algorithm is fairly easy to understand and implement, the resulting Gray code

generally appears to be extremely chaotic and difficult to interpret. One would hope that the

inherent symmetry demonstrated by complete graphs would lead to Smith’s algorithm producing

neat and interpretable Gray codes when they are applied on Kn. However, this does not seem

to be the case. More broadly, searching for a neat Gray code of the nn−2 spanning trees of Kn

remains an extraordinarily challenging task, as Knuth designated the question in exercise of Art of

Programming, Vol. 4A with a difficulty rating of 46/50 [32] (see Figure 6.1).
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Figure 6.5: T4, Spanning trees of the complete graph K4.

6.3 A Greedy Revolving Door Algorithm

As in Chapter 1, we saw traditional, recursive definitions of the BRGC and plain change order,

we revealed that those common examples of Gray code can be defined in a more straightforward

way by using a Gray code algorithm in Chapter 2. As we will discover in this section, a similar

situation also applies for spanning trees for complete graph Kn. In the last section we discussed a

Gray code for spanning trees by Malcolm Smith using via contraction and deletion. Recent work

[39] has uncovered a more simple and flexible greedy algorithms.

Since the complete graph will never be disconnected if a single edge is deleted, the “revolving

door” algorithm could be substantially simplified. The thought is to specify a starting spanning tree

s, and each time delete an edge from s then insert another edge. The deletion and insertion will

follow a certain set of prioritization rules, thus converting the procedure into a greedy algorithm.

Algorithm 8 displays our implementation of the flexible greedy algorithm for generating Gray

codes of spanning trees. The parameters of this algorithm include the initial spanning tree, the order

of edges in which they are deleted or inserted in the outer loop (i.e. how to order the elements of the
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Algorithm 8 Greedy algorithm for generating Gray codes of spanning
trees spanning(n,first,O,T()). By default vertices of the complete graph are numbered
0, 1, · · · , n− 1, and edges are stored by their two vertices. The order starts with the spanning tree
first. O illustrates the priority that edges are deleted or inserted. T(s, i) is the tiebreaker rule that
determines the order of edges to select in the inner loop, which in our case is defined either in the
increasing order: T(s, i) = 1, 2, · · · , i or the decreasing order: T(s, i) = i, i− 1, · · · , 1.

1: procedure spanning(n,first,O,T())
2: s← first ▷ Starting spanning tree s = first
3: S ← {s} ▷ Add s to the visited set
4: visit(s) ▷ Visit s for the first and only time
5: i← 1 ▷ 1-based index into O
6: for i ≤ size(O) do ▷ Index i iterates through all no. of edges in O
7: for j ∈ T(s, i) do ▷ Index j iterates through all edges in T(s, i)
8: e1 ← O[i]
9: e2 ← O[j]

10: if e1 ∈ s & e2 /∈ s then ▷ Check if only one of e1, e2 is in s
11: s′ ← (s\e1) ∪ e2 ▷ Delete one edge and insert the other
12: else if e2 ∈ s & e1 /∈ s then
13: s′ ← (s\e2) ∪ e1
14: else
15: continue
16: if s′ ∈ Tn & s′ /∈ S then ▷ Check if s′ is a new spanning tree
17: s← s′ ▷ Update the current spanning tree s
18: visit(s) ▷ Visit s for the first and only time
19: S ← S ∪ s ▷ Add s to the visited set
20: i← 1 ▷ Reset i

matroid as well as the first basis in the order), and the order of edges to consider in the inner loop

(tiebreaker). In our algorithms, the tiebreaker is either increasing or decreasing order, but technically

other orders may be considered and the order may even be dependent on the choice in the outer loop

[39]. As a result, the greedy algorithm is highly flexible and can generate a large number of different

Gray codes. Unlike the signed permutation Gray codes, we do not have a clear understanding of

these Gray codes. In order to obtain “neat” Gray codes, we are especially interested in rulesets

which produce either a cyclic Gray code or an elegant ending spanning tree given a simple starting

spanning tree. The goal is to interpret one or several spanning tree Gray codes so that they can be

generated efficiently, similar as the Gray codes for signed permutations we generated in Chapter 5.

Figure 6.6 - 6.9 displays two examples of Algorithm 8. Note that in both examples, we use

(0, 1), (0, 2), (0, 3) as the starting spanning tree of K4; Figure 6.6 and Figure 6.8 displays the order

of edges O in the two cases; and the first case uses the decreasing order as tiebreaker, while the

second case uses the increasing tiebreaker. The resulting Gray codes are also referred as Gray code

1b and 2a in the next section.
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Figure 6.6: Complete graph
K4 with edges ordered accord-
ing to increasing first and in-
creasing second vertices.
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Figure 6.7: Consequent Gray code of spanning trees.

1 0

2 3

e3

e2
e1e5

e4

e6
Figure 6.8: Complete graph
K4 with edges ordered accord-
ing to increasing first and de-
creasing second vertices.
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Figure 6.9: Consequent Gray code of spanning trees.

6.4 Experimental Results

[39] proves that the greedy algorithm for Gray codes of spanning trees of Kn is valid for all choices

of edge labels, first spanning tree, and tiebreaker rules. Nevertheless, there is no guarantee that the

resulting order is simpler, or that it can be generated efficiently. It isn’t even clear how we could

identify that an order is “simple”. In this section, we adopt the idea that an order is hopefully simple

if its final spanning tree is predictable. We run several experiments to check the final spanning tree

based on various combinations of choices.

We nominate spanning trees containing all edges with distance 1 as the starting spanning tree

for all our experiments, which are paths (0, 1), (1, 2), · · · , (n− 2, n− 1).

We focused our experiments on 4 different ordering of edges (O) combined with the 2 natural

tiebreaker rules (increasing and decreasing order), thus producing 8 different Gray codes. The
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ordering in O is listed as following:

Order 1: Arrange vertices of each edge in lexicographic order (0, 1) < (0, 2) < (0, 3) < · · · <
(0, n− 1) < (1, 2) < (1, 3) < · · · < (1, n− 1) < · · · < (n− 2, n− 1).

Order 2: Arrange the first vertex of each edge in increasing order and second vertex in decreasing

order: (0, n − 1) < (0, n − 2) < (0, n − 3) < · · · < (0, 1) < (1, n − 1) < (1, n − 2) < · · · < (1, 2) <

· · · < (n− 2, n− 1).

Order 3: Arrange vertices in the order of increasing “distance” between vertices and then the first

vertex in increasing order (0, n− 1) < (0, n− 2) < (1, n− 1) < (0, n− 3) < (1, n− 2) < (2, n− 1) <

· · · < (0, 1) < (1, 2) < (2, 3) < · · · < (n− 2, n− 1).

Order 4: Arrange vertices in the order of decreasing “distance” between vertices and then the first

vertex in increasing order (0, 1) < (1, 2) < (2, 3) < · · · < (n − 2, n − 1) < (0, 2) < (1, 3) < · · · <
(0, n− 1).

Designating the increasing tiebreaker as a and decreasing tiebreaker as b, the 8 different Gray

codes are numbered as 1a,1b,2a, · · · ,4b. After inspection with regards to the standards mentioned

at the end of Section 6.3, we found Gray code 3a and 4a to be especially promising candidates:

n Last spanning tree

5

0 1 2 3

4

6

0 1 2 3 4

5

7

0 1 2 3 4 5

6

8

0 1 2 3 4 5 6

7

9

0 1 2 3 4 5 6 7

8

Table 6.1: Gray code 3a.

Note that both Gray codes use the distance between vertices of edges (i.e. the difference between

the numbers on the vertices). From Table 6.1 we observe that in all cases, the Gray code 3a is

cyclic since the last spanning tree always differs from the first spanning tree from replace the edge

of the largest distance (0, n− 1) with an edge of the shortest distance (n− 2, n− 1). Such an Gray

code is considered as a valid candidate for our goal. From Table 6.2, we observe that Gray code 3a

is non-cyclic, albeit seemingly transforming the starting spanning tree into another path attached

with several branches. We speculate that some sort of more formulatable relationship between the

first and last spanning tree may exist, but more meticulous research on the Gray code is required.
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n Last spanning tree

5 4 0 1 2 3

6

0 5 3 1 2

4

7

0 6 5 3 4 1

2

8

0 7 6 1 5 2

4 3

9

0 8 6 1 5 3

2

4

7

Table 6.2: Gray code 4a.

Though we nominated two candidates for Knuth’s problem on Gray codes of complete graph Kn,

we still do not understand how to implement these Gray codes looplessly, or if there exist loopless

algorithms that generate these Gray codes. This is an area for future work.



Chapter 7

Summary

This thesis began by considering orderings of objects so that consecutive objects are close to each

other. This includes Lewis Carroll’s notion of a word ladder puzzle, as well as the general notion

of a Gray code. We considered the two most celebrated Gray codes, the binary reflected Gray

code for binary strings and plain changes for permutations. We described how these orders can

be constructed recursively, and visualized them as Hamilton paths in their underlying flip graphs.

Then we saw simpler greedy descriptions of these orders, and how to generate them with loopless

algorithms using associated ruler sequences. Our focus then changed to creating Gray codes for

signed permutations.

We modeled signed permutations using two-sided ribbons, which helped motivate twist opera-

tions. Inspired by the greedy algorithms for the binary reflected Gray code and plain changes, we

experimented with a variety of greedy algorithms for signed permutations using twists, flips, and

swaps. We found a dozen such algorithms that worked empirically, and considered why they worked

in general. We provided three representative proofs of correctness, which involved looking at the

resulting orders in blocks of length n! (following permutohedra), 2n (following cubes), or 2n (follow-

ing zig-zags). Using the efficient loopless algorithms for the binary reflected Gray code and plain

changes as guidelines, we developed loopless generation algorithms for our new Gray codes using

signed ruler sequences. In other words, we accomplished our goal of creating greedy and speedy

Gray code algorithms for signed permutations.

Finally, we investigated new greedy Gray codes results for matroid bases [39]. These algorithms

are flexible and can provide a wide variety of specific Gray codes for various combinatorial objects.

However, they are not yet well understood in the sense that they can be generated by simple

efficient algorithms. We specifically considered tuning these algorithms for the spanning trees of the

complete graph, for which there is an associated open 46/50 difficulty problem posted by Knuth.

We considered two specific sets of parameters, and found that one set appears to generate a cyclic

Gray code, which is a result that was not anticipated in [39]. This is a promising direction that we

hope to investigate in the future.

For additional future work we mention the problem of creating successor rules for our Gray

codes. Given a Gray code, a successor rule is a function that efficiently maps each object to the

54
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next object. Note that these rules derive all of the necessary information from the current object,

and do not use any alternate information or sequence to determine the next change. In particular,

our algorithms in Chapter 5 do not employ successor rules, since the next change is provided by a

signed ruler sequence.

It is worth noting that some Gray codes have been developed by creating a successor rule from

scratch. In other words, the first description of the Gray code was a successor rule. This includes

cool-lex orders, which were investigated by Paul Lapey (’22) [35] for  Lukasiewicz words [37] and

ordered trees [36]1 as well as the sigma-tau order for permutations (see [67] [55] [56] [38]). However,

it is more common for Gray codes to be developed in another manner (i.e., recursively or greedily)

before the successor rule is derived. To add hope to this ambition, we mention that a successor

rule was developed for the greedy Gray code of colored permutations using flips (sign-incrementing

prefix-reversals) [7, 6].

1Cool-lex orders exist for other objects including combinations [51], binary strings [60, 61], balanced parentheses
[50], k-ary trees [14], Catalan squares [12], and bubble languages [49] [69].
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Appendix A

Selected Implementations

This appendix includes Python and C++ programs for generating the Gray codes discussed in this

thesis. The programs are also available online [68, 46].

The first program is written in Python 3. It is a loopless implementation of our signed plain

change order twisted(n) (Experiment 8), but it can be adjusted to generate any of the other 11 Gray

codes. It generates the signed ruler sequence ruler±(n, n−1, . . . , 2, 1, 2, 2, . . . , 2), with each entry

selecting the 2-twist or 1-twist (i.e., flip) to apply. Some implementation notes are below.

• Negative indices give right-to-left access in Python, so the ruler entry -1 selects the last

function fns[-1] = twist(p,q,n,1) (i.e., 2-twist n right).

• The slice notation [-1::-1] reverses a list. Also note that the order of indices is reversed from

Chapter 3.

• The v=v default values in the lambda functions are for proper binding.

The second program is written in C++. It provides a loopless implementation of our signed

plain change order twisted(n) (Experiment 8). More specifically, it is a streamlined version of the

third program. This program also illustrates the use of a visit function. The user of the generation

program (i.e., the application) can provide their own visit function that will be called every time

a new object is created. In particular, a sample visit function called visit print is provided in

[46], and it simply outputs each successive signed permutation. More broadly, the visit function

is called with the specific change that is made to create the next signed permutation. In this way,

the user of the program does not need to scan for the location of the change, so they can update

certain associated information in worst-case O(1)-time based on the operation that was performed.

For more information, see the discussion of exact algorithms in Section 1.2.3, or Section 1.2 of [28]

for the efficient evaluation of TSP problems using permutation Gray codes.

The third program is written in C++. It provides loopless implementations of all 12 Gray codes

created in this thesis. The signed ruler sequences are generated in loopless signed perm with a

similar way as in the Python program. The signed permutations are changed in correspondence with

the signed ruler sequences, and for each of the 12 Gray codes, corresponding functions representing

61
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operations and bases are passed in as variables. Standalone compilable versions of this program as

well as the third program are available in [46].

• base type indicates bases of ruler sequence: 0 is two dec(n)= (2, 2, . . . , 2, n, n−1, . . . , 2, 1), 1 is

dec two(n)= (n, n−1, . . . , 1, 2, 2, . . . , 2, 2), 2 is two dec zigzag(n)= (2, n, 2, n−1, . . . , 2, 2, 2, 1),

3 is dec two zigzag(n)= (n, 2, n− 1, 2, . . . , 2, 2, 1, 2).

• algorithm is a lambda function that takes change from ruler sequence and returns the symbol

to be changed and the operation type, which are individually defined by the 12 Gray codes.

• visit is a user-defined function that is called for each object and change. It can be written

to perform printing, debugging, etc.
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# Flip sign of value v in signed permutation p with unsigned inverse q

def flip(p, q, v): # with 1-based indexing, p[0] and q[0] are ignored.

p[q[v]] = -p[q[v]]

return p, q

# 2-twists value v to the left / right using delta = -1 / delta = 1

def twist(p, q, v, delta): # with 1-based indexing into both p and q.

pos = q[v] # Use inverse to get the position of value v.

u = abs(p[pos+delta]) # Get value to the left or right of value v.

p[pos], p[pos+delta] = -p[pos+delta], -p[pos] # Twist u and v.

q[v], q[u] = pos+delta, pos # Update unsigned inverse.

return p, q # Return signed permutation and its unsigned inverse.

# Generate each signed permutation in worst-case O(1)-time.

def twisted(n):

m = 2*n-1 # The mixed-radix bases are n, n-1, ..., 2, 1, 2,..., 2.

bases = tuple(range(n,1,-1)) + (2,) * n # but the 1 is omitted.

word = [0] * m # The mixed-radix word is initially 0^m.

dirs = [1] * m # Direction of change for digits in word.

focus = list(range(m+1)) # Focus pointers select digits to change.

flips = [lambda p,q,v=v: flip(p,q,v) for v in range(n,0,-1)]

twistsL = [lambda p,q,v=v: twist(p,q,v,-1) for v in range(n,1,-1)]

twistsR = [lambda p,q,v=v: twist(p,q,v, 1) for v in range(n,1,-1)]

fns = [None] + twistsL + flips + flips[-1::-1] + twistsR[-1::-1]

p = [None] + list(range(1,n+1)) # To use 1-based indexing we set

q = [None] + list(range(1,n+1)) # and ignore p[0] = q[0] = None.

yield p[1:] # Pause the function and return signed permutation p.

while focus[0] < m: # Continue if the digit to change is in word.

index = focus[0] # The index of the digit to change in word.

focus[0] = 0 # Reset the first focus pointer.

word[index] += dirs[index] # Adjust the digit using its direction.

change = dirs[index] * (index+1) # Note: change can be negative.

if word[index] == 0 or word[index] == bases[index]-1: # If the

focus[index] = focus[index+1] # mixed-radix word's digit is at

focus[index+1] = index+1 # its min or max value, then update

dirs[index] = -dirs[index] # focus pointers, change direction.

p, q = fns[change](p, q) # Apply twist or flip encoded by change.

yield p[1:]

# Demonstrating the use of our twisted function for n = 4.

for p in twisted(4): print(p) # Print all 2^n n! signed permutations.

Figure A.1: twisted.py [68] twisted(n) (Experiment 8). It can be adapted to generate our other
Gray codes by modifying the signed ruler bases and the fns that are applied for each entry in the
associated signed ruler sequence. Similarly, a streamlined version (without lambda functions) can
be made by replacing fns[change] with specific calls to the flip and twist functions.
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void signed_perm_8(int n, function<void(vector<int>, int, string)> visit) {

vector<int> cur_perm(n);

vector<int> inverse(n + 1);

iota(cur_perm.begin(), cur_perm.end(), 1);

iota(inverse.begin(), inverse.end(), -1);

vector<int> bases; // bases = [n,n-1,...,2,1,2,2,...,2,2]

for (int i = n; i > 0; i--) bases.push_back(i);

for (int i = 0; i < n; i++) bases.push_back(2);

vector<int> word(bases.size(), 0);

vector<int> dir(bases.size(), 1);

vector<int> focus(bases.size() + 1);

iota(focus.begin(), focus.end(), 0);

while (focus[0] < bases.size()) {

int index = focus[0];

focus[0] = 0;

word[index] += dir[index];

int change = dir[index] * (index + 1);

if (word[index] == 0 || word[index] == bases[index] - 1) {

dir[index] = -dir[index];

int extra = (index < bases.size()-1 && bases[index+1] == 1 ?1:0);

focus[index] = focus[index + extra + 1];

focus[index + extra + 1] = index + extra + 1;

}

int val = -1; int change_type = -1;

if (abs(change) > n) { val = 2*n+1 - abs(change); change_type = 0; }

else { val = n+1 - abs(change); change_type = (change > 0 ?1:2);}

int pos = inverse[abs(val)];

switch (change_type){

case 0: {

visit(cur_perm, val, "t1"); // flip sign of value

cur_perm[pos] *= -1;

break;}

case 1: {

visit(cur_perm, val, "t2l"); // twist value to the left

int other = cur_perm[pos - 1];

swap(cur_perm[pos - 1], cur_perm[pos]);

cur_perm[pos] *= -1;

cur_perm[pos - 1] *= -1;

inverse[abs(val)] = pos - 1;

inverse[abs(other)] = pos;

break;}

case 2: {

visit(cur_perm, val, "t2r"); // twist value to the right

int other = cur_perm[pos + 1];

swap(cur_perm[pos + 1], cur_perm[pos]);

cur_perm[pos] *= -1;

cur_perm[pos + 1] *= -1;

inverse[abs(val)] = pos + 1;

inverse[abs(other)] = pos;

break;}

}

}

visit(cur_perm, 0, "o"); // the last permutation has no change

}

Figure A.2: signedPerm8.cpp [46] generates twisted(n) (Experiment 8).
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vector<int> two_dec(int n){

vector<int> ans(n, 2);

for (int i = n; i > 0; i--) ans.push_back(i);

return ans;

}

vector<int> dec_two(int n){

vector<int> ans = {};

for (int i = n; i > 0; i--) ans.push_back(i);

for (int i = 0; i < n; i++) ans.push_back(2);

return ans;

}

vector<int> two_dec_zigzag(int n){

vector<int> ans = {};

for (int i = n; i > 0; i--){

ans.push_back(2);

ans.push_back(i);

}

return ans;

}

vector<int> dec_two_zigzag(int n){

vector<int> ans = {};

for (int i = n; i > 0; i--){

ans.push_back(i);

ans.push_back(2);

}

return ans;

}

void loopless_signed_perm(int n, int base_type,

function<pair<int, int>(int)> algorithm,

function<void(vector<int>, int, string)> visit){

vector<int> cur_perm(n);

vector<int> inverse(n+1);

iota(cur_perm.begin(), cur_perm.end(), 1);

iota(inverse.begin(), inverse.end(), -1);

vector<int> bases;

switch(base_type){

case 0:

bases = two_dec(n);

break;
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case 1:

bases = dec_two(n);

break;

case 2:

bases = two_dec_zigzag(n);

break;

case 3:

bases = dec_two_zigzag(n);

break;

}

vector<int> word(bases.size(), 0);

vector<int> dir(bases.size(), 1);

vector<int> focus(bases.size() + 1);

iota(focus.begin(), focus.end(), 0);

int first = (bases[0] > 1 ? 0 : 1);

while(focus[first] < bases.size()){

int index = focus[first];

focus[first] = first;

word[index] += dir[index];

int change = dir[index] * (index + 1);

if (word[index] == 0 || word[index] == bases[index] - 1){

dir[index] = -dir[index];

int extra = (index < bases.size() - 1 && bases[index+1] == 1 ?1:0);

focus[index] = focus[index + extra + 1];

focus[index + extra + 1] = index + extra + 1;

}

pair<int, int> op = algorithm(change);

int val = op.first;

int pos = inverse[abs(val)];

switch (op.second){

case 0: {

visit(cur_perm, val, "sl"); // swap value to the left

int other = cur_perm[pos - 1];

swap(cur_perm[pos - 1], cur_perm[pos]);

inverse[abs(val)] = pos - 1;

inverse[abs(other)] = pos;

break;

}

case 1: {

visit(cur_perm, val, "sr"); // swap value to the right

int other = cur_perm[pos + 1];

swap(cur_perm[pos + 1], cur_perm[pos]);

inverse[abs(val)] = pos + 1;

inverse[abs(other)] = pos;
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break;

}

case 2: {

visit(cur_perm, cur_perm[pos], "t1"); // flip sign at index

pos = abs(val)-1;

cur_perm[pos] *= -1;

break;

}

case 3: {

visit(cur_perm, val, "t1"); // flip sign of value

cur_perm[pos] *= -1;

break;

}

case 4: {

visit(cur_perm, val, "t2l"); // twist value to the left

int other = cur_perm[pos - 1];

swap(cur_perm[pos - 1], cur_perm[pos]);

cur_perm[pos] *= -1;

cur_perm[pos - 1] *= -1;

inverse[abs(val)] = pos - 1;

inverse[abs(other)] = pos;

break;

}

case 5: {

visit(cur_perm, val, "t2r"); // twist value to the right

int other = cur_perm[pos + 1];

swap(cur_perm[pos + 1], cur_perm[pos]);

cur_perm[pos] *= -1;

cur_perm[pos + 1] *= -1;

inverse[abs(val)] = pos + 1;

inverse[abs(other)] = pos;

break;

}

}

}

visit(cur_perm, 0, "o"); // the last permutation has no change

}

int main(){

int n;

scanf("%d", &n);

auto algorithm1 = [n](int change){

if(abs(change) <= n) return make_pair(n+1-abs(change), 3);
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else return make_pair(2*n+1-abs(change), (change > 0 ? 0 : 1));

};

loopless_signed_perm(n, 0, algorithm1, visit_print);

auto algorithm2 = [n](int change){

if (abs(change) > n) return make_pair(2*n+1-abs(change), 3);

else return make_pair(n+1-abs(change), (change > 0 ? 0 : 1));

};

loopless_signed_perm(n, 1, algorithm2, visit_print);

auto algorithm3 = [n](int change){

if (abs(change)%2 == 1) return make_pair(n+1-(abs(change)+1)/2, 3);

else return make_pair(n+1-(abs(change)+1)/2, (change > 0 ? 0 : 1));

};

loopless_signed_perm(n, 2, algorithm3, visit_print);

auto algorithm4 = [n](int change){

if (abs(change)%2 == 0) return make_pair(n+1-(abs(change)+1)/2, 3);

else return make_pair(n+1-(abs(change)+1)/2, (change > 0 ? 0 : 1));

};

loopless_signed_perm(n, 3, algorithm4, visit_print);

auto algorithm5 = [n](int change){

if (abs(change) <= n) return make_pair(n+1-abs(change), 2);

else return make_pair(2*n+1-abs(change), (change > 0 ? 0 : 1));

};

loopless_signed_perm(n, 0, algorithm5, visit_print);

auto algorithm6 = [n](int change){

if (abs(change) > n) return make_pair(2*n+1-abs(change), 2);

else return make_pair(n+1-abs(change), (change > 0 ? 0 : 1));

};

loopless_signed_perm(n, 1, algorithm6, visit_print);

auto algorithm7 = [n](int change){

if (abs(change) <= n) return make_pair(n+1-abs(change), 3);

else return make_pair(2*n+1-abs(change), (change > 0 ? 4 : 5));

};

loopless_signed_perm(n, 0, algorithm7, visit_print);

auto algorithm8 = [n](int change){

if (abs(change) > n) return make_pair(2*n+1-abs(change), 3);

else return make_pair(n+1-abs(change), (change > 0 ? 4 : 5));

};
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loopless_signed_perm(n, 1, algorithm8, visit_print);

auto algorithm9 = [n](int change){

if (abs(change) <= n) return make_pair(n+1-abs(change), 2);

else return make_pair(2*n+1-abs(change), (change > 0 ? 4 : 5));

};

loopless_signed_perm(n, 0, algorithm9, visit_print);

auto algorithm10 = [n](int change){

if (abs(change) > n) return make_pair(2*n+1-abs(change), 2);

else return make_pair(n+1-abs(change), (change > 0 ? 4 : 5));

};

loopless_signed_perm(n, 1, algorithm10, visit_print);

auto algorithm11 = [n](int change){

if (abs(change)%2 == 1) return make_pair(n+1-(abs(change)+1)/2, 3);

else return make_pair(n+1-(abs(change)+1)/2, (change > 0 ? 4 : 5));

};

loopless_signed_perm(n, 2, algorithm11, visit_print);

auto algorithm12 = [n](int change){

if (abs(change)%2 == 0) return make_pair(n+1-(abs(change)+1)/2, 3);

else return make_pair(n+1-(abs(change)+1)/2, (change > 0 ? 4 : 5));

};

loopless_signed_perm(n, 3, algorithm12, visit_print);

return 0;

}

Figure A.3: signedPerm.cpp [46] generates all 12 Gray codes.
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