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Combinatorial Generation
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Combinatorial Objects

In computer science, we often work with different types of combinatorial objects.

In many applications, we need to find an optimal object of a particular type and/or size according
to some metric (e.g., a minimum weight spanning tree of a graph).
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Binary string with n = 5 bits. A permutation of [n] ={1,2, ..., n} forn =5. A spanning tree of the
It can model a knapsack solution for n = 5. It can model a TSP solution for n = 5. complete graph K, forn =5.

The number of objects of a given type is often exponential with respect to the size.
@ There are 2" binary strings with n bits.

@ There are n! permutations of [n].
@ There are n™2 spanning trees of K,,.

Therefore, we usually don't want to generate every object when finding an optimal one.
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Comblnatonal Generation

In some applications, it is necessary or beneficial to consider every object of a given type and size.
@ 7esting. Binary strings with n bits represent all possible states for a circuit or chip with n inputs.
@ £xact algorithms. Permutations of [n] represent directed paths in a traveling salesman problem.
@ Calculations. Some electrical engineering formulae sum over all spanning trees of a CII’CUI’[
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All binary strings with n = 3. All permutations with n = 3. All spanning trees of K, with n = 4.

Combinatorial generation refers to the efficient creation of every object in computer memory.
Since there are exponentially many objects, they should be created one at a time, not all at once.
Time complexity: How much time to create the next object (e.g., amortized O(n)-time per object)?
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Programming Language Support

Many contemporary programming languages have /ferators that streamline the process of
providing one object at a time, and /ibraries of iterators for different combinatorial objects.

from itertools import permutations from itertools import permutations

for perm in permutations([1,2,3,4]):
# do something with permutation
print(perm)

for perm in permutations([1,2,3,3]): _
# do something with permutation

print(perm)

(1,2,3,3)
(1,2,3,3)-

(1,2,3,4) tuples
(1,2,4,3) " ° ® (non-mutable)

(4,3,2,1) (3,3,2,1)

Generating permutations with Python’s itertools library. Standard Python libraries do not generate multiset permutations

Unfortunately, this support is limited and flawed in many fundamental ways.
@Few combinatorial objects are available (e.g., permutations but not multiset permutations).
@Every object is returned as a separate entity. Thus (n)-time (i.e. at least O(n)-time) is used.
This is wasteful since applications typically use each object and don't need to storeall of them.
@ Objects are generated in /exicographic order. This “normal” order is familiar but not efficient.



Yuan (Friedrich) Qiu

Standard Approach

Lexicographic order

Iterators use
(n)-time

to create the

next new object

Applications use
(n)-time just

to read the new
next object

Successive objects can
differ everywhere i.e., 6
(n) changes

$#@%

computers!
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N

/ Better Approach
A Gray codeis a minimal change order

Successive objects Iterators use Applications use

differ by a constant (1)-time (1)-time to
amount, i.e., 6 (1) to create the process the
change next change change

v e
computers!

The standard approach is unacceptable for such a common computational task.
The situation is worse for less common objects (e.g., multiset permutations).
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Programmers ask the same questions year after year for objects that are not in standard libraries.
@ This is repeated for every combinatorial object and every programming language.



Yuan (Friedrich) Qiu and Speedy: New Iterative Gray Code Algorithms Thesis Proposal Talk 8

VWho is To blame?
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The Art of Computer Programming
Combinatorial Algorithms, Part 1

The Art of Computer Programming

Sorting and Searching

The Art of Computer Programming
Seminumerical Algorithms

The Art of Computer Programming

Fundamental Algorithms
2. Generating All Possibilities
7.2.1. Generating Basic Combinatorial Patterns . . . . . . . . . . . 281

7.21.1. Generating all n-tuples . . . . . . . . . . . . . .. 281 200+ pages on

7.2.1.?. (3cncmt1tng all pcrml'ltnt‘ions ............. 3}‘») ComblnatOI‘ial

7.2.1.3. Generating all combinations . . . . . . . . . . . . . & 355

7.2.1.4. Generating all partitions . . . . . . . . . . . . . .. 390 g‘ene]"ation

7.2.1.5. Generating all set partitions . . . . . . . . . . . . . 415 .

\ 7.2.1.6. Generatingall trees . . . . . . . . . . . . . . ... 440 m VOlume 4

(the GOdfather Of COIIlPUter SCleHCG) 7.2.1.7. History and further references . . . . . . . . . . . . 486

The most influential Computer Science textbook has a nearly 40 year gap between topics.
@ Sorting and searching (1973) is taught in every algorithms course.
@ Combinatorial generation (2011) is taught in almost no algorithms courses.
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TheS|s Goals Greedy and Speedy

General Goals

Promote a modern approach to combinatorial generation.
@ Greedy. One sentence descriptions of Gray code orders.
@ Speedy. Loopless implementations (i.e., worst-case O(1)-time per object) that are simple
enough to be implemented in any programming language.

Specific Goals
Focus on a combinatorial object that does not yet have a well-known generation algorithm.
® A signed permutationis a permutation in which each symbol is given a = sign.

Stretch Goals
Solve one of Knuth's open problems involving combinatorial generation.

A simple edge-exchange algorithm for generating the spanning trees of the complete graph K.
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millions of
downloads

Loopless Generation of Multiset Permutations Package ‘multicool’
using a Constant Number of Variables by Prefix Shifts

Aaron Williams * February 5, 2024

T Pack X 104
4, 5] — init(E) ype Package 60,454 0:

visit(h) Title Permutations of Multisets in Cool-Lex Order o
wlilile j.n# ¢ or j.w < hw do Version: 10 o
if j.n # ¢ and i.v > j.n.v then 2 James Curran

s Date 2024-02-05 o
o wors (N

. Author James Curran, Aaron Williams, Jerome Kelleher, Dave Barber )
) — wicense

end if Maintainer James Curran <j.curran@auckland.ac.nz> 101 e
t e sn

Description A set of tools to permute multisets without loops or hash tables and to generate inte-
ger partitions. The permutation functions are based on C code from Aaron Williams. Cool-lex or-
der is similar to colexicographical order. The algorithm is described in Williams, A. Loop-
less Generation of Multiset Permutations by Prefix Shifts. SODA 2009, Symposium on Dis-

s.n+— t.n
tn«<—h
if t.v < h.v then

enti;' t |:> crete Algorithms, New York, United States. The permutation code is distributed without restric-
jeim tions. The code for stable and efficient computation of multinomial coeffi-
h—t ACM-SIAM Symposium on cients comes from Dave Barber. The code can be down-
visit(h) Discrete Algorithms load from <http://tamivox.org/dave/multinomial/index.html> and is distributed with-
end while out conditions. The package also generates the integer partitions of a positive, non-zero inte-
ger n. The C++ code for this is based on Python code from Jerome Kelle-
Research paper on multiset permutations. Implementation in R.

Example of a combinatorial generation algorithm that is used in practice.
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Ruler Sequences
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Lexncographlc Order

Combinatorial objects can always be encoded as strings of symbols (e.g., binary representation).
So they can be put in /exicographic order, which generalizes counting and aIphabeticaI order.
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Binary strings n = 3. Permutations n =

The issue with lexicographic order is that successive objects can be completely different.
A Gray codeis an order in which successive objects differ in a constant amount by some metric.
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20 40 70 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 990

A ruler’s tick marks indicate how many dlglts change when counting in decimal. For example, the tick mark at 200 has
height 3 since that number of digits change from 199 to 200. The sequence of heights is the decimal ruler sequence.
A meter stick has numbers from 0 to 999 (i.e., three base-10 digits).

ruler(10,10,20)=1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,2,1,..,1 I[2]3 5

A binary ruler’s ticks follow the binary ruler sequence and counting in binary. 1]3]2 3
ruler(2,2,2)=1,2,1,3,1,2,1 21113

For permutations there is a factorial ruler sequence. 21311 2

ruler(3,2,1)=2,3,2,3,2 31112 3

It gives the number of changed symbols in the lexicographic order of permutations. 2
3(21]1

The ruler sequence with basesb =b,, b,,, ..., b; has length (b, - b,,.; --- b;)-1.
ruler(b,))=11,..1
ruler(b) = ruler(b"), n, ruler(b”), n, ..., n, ruler(b”) whereb’=b, 4, b, ..., b;

These sequence are easy to generate efficiently: worst-case O(1)-time per entry.
They provide change sequences for lexicographic order and for various types of Gray codes.

1 10 11 100 101 110 111 1000 1001 1010 1011 1100 0 0 0000 1000 0010 100 0100 1010 0110 10 000 00 010 0 00 0 0
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Gray Codes

Minimal-Change Orders



Binary Reflected Gray Code

for binary strings
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Bmary Reflected Gray Code

The binary reflected Gray code orders the n-bit binary
strings so that consecutive strings differ in one bit.
It is typically defined recursively as follows

B(n) = 0-B(n-1), 1-B(n-1)R with B(1) =0, 1

where - denotes concatenation and R is list reflection.

The Gray code is attributed to Frank Gray who referred

to it as reflected orderin a 1945 patent from Bell Labs.

However, it was known (even at Bell Labs) before this.

While the recursive definition of B(n) explains its
global structure, it is neither the simplest or most
efficient definition for generating it iteratively.

Binary reflected Gray code B(n)
for n = 2 (left) and then n = 3 (right).
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The Greedy Gray Code Algorithm

Aaron Williams haron@uvic.ca *

Department of Mathematics and Statistics, McGill University

Abstract. We reinterpret classic Gray codes for binary strings, permu-
tations, combinations, binary trees, and set partitions using a simple
greedy algorithm. The algorithm begins with an initial object and an
ordered list of operations, and then repeatedly creates a new object by
applying the first possible operation to the most recently created object.

GreedyGray(s, (fif,..f) )

e Initialize alistL =s.
@ Repeatedly extend the list L as follows:
O Let x be the last object in the list.
OLet i be the minimum index with f;(x) L.
If there is no such index i, then stop.
O Add f,(x) to the end of the list.

The greedy Gray code algorithm can be used to generate a list by making two choices.

@ Choose a start object s.

@ Choose a prioritization of the operations (f,, f£,, .., £,» used to change the objects.

The algorithm succeeds when it generates a list of all of the objects. Otherwise, it 7a//s.
It is simple (i.e., just make two choices) but not efficient (i.e., it stores all previous objects).
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Slmpler Greedlly Flip the Rightmost Bit

The binary reflected Gray code is also generated greedily.
@ Start withs=0n(i.e., all zeros).
@ Prioritize flipping bits from right to left.

This is not an efficient algorithm in terms of memory
because it needs to remember previous objects.

However, it is very simple to describe, so long as the
greedy Gray code algorithm has been explained.

It is also possible to generate this order in a more
efficient manner.

Greedily generating B(3)
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Faster Blnary Ruler Sequence

The binary reflected Gray code’s change sequence is the
binary ruler sequence. In other words, successive entries
in ruler(2, 2, ..., 2) specify which bit to change.

In other words, the difference between the lexicographic
order of binary strings (i.e., counting in binary) and the
binary reflected Gray code is that the ruler sequence
specifies the number of bits to change instead of the
single bit to change.

Y
» » »
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This leads to a loopless implementation of the binary
reflected Gray code.

PNEFRPWERE N

Efficiently generating B(3)
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Inside a dial v s A e A Binary reflected
(e.g., volume knob) . _ Ao W (o gy Gray code B(13)

Rotary encoders use the binary reflected Gray code.
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Plain Changes

for permutations
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Plain Changes

Plain changes orders the permutations of [n] so that
consecutive permutations differ by a swap (i.e,. exchange
a pair of adjacent entries).

It is typically defined recursively by alternately zigging
(right to left) and zagging (left to right) the value n
through successive permutations of [n-1].

P(n) = zig(py), zag(Pz), -, ZIG(P(n-1yr-1), ZAY(P(n-1y1):
withP(2) = py, p, =12, 21

The order was discovered in 1600s by bell-ringers.
It was rediscovered multiple times in the 1960s and is
often known as Steinhaus-Johnson-Trotter order.
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Plain changes P(n)
for n = 3 (left) and then n = 4 (right).
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Simpler: Greedily Swap the Largest Value

Plain changes is also generated greedily.
@ Start withs=12--- n(i.e., identity permutation).
@ Prioritize swaps involving the largest possible value.

This is not an efficient algorithm in terms of memory
because it needs to remember previous objects.

However, it is very simple to describe, so long as the
greedy Gray code algorithm has been explained.

It is also possible to generate this order in a more
efficient manner.

Greedily generating P(4)



Faster: Factorial Ruler Sequence

The changes in plain changes follow one of the factorial
ruler sequences with signs: rulerx(n, n-1, ..., 1).

@ Entries of +k for swapping k to the left.

@ Entries of —k for swapping k to the right.

This leads to a loopless algorithm for generating
plain changes P(n).

Greedy and Speedy: New Iterative Gray Code Algorithms
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Greedily generating P(4)
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Treble | g 3 | 4 _Tenor

Bell ringing.
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New Result:
Signed Plain Changes



Thesis Proposal Talk 28

Yuan (Friedrich) Qiu Greedy and Speedy: New Iterative Gray Code Algorithms

Signed Permutations

A signed permutationis a permutation of [n] in which each symbol is given a + or - sign.
There are 2n - n! signed permutations and they are the product of a permutation and binary string.

+1+2, +1-2, -1+2, -1-2, +2+1, +2-1, -2+1, -2-1 I
Signed permutations forn = 2. - P

Signed permutations model orders in which the elements also have an orientation. e  —

+4 I 4

o
-3 _P
B e == ——~ () — —|
Trains and subways have orientations Genes either appear in the forward or A 2-twist which changes the
(e.g., eastbound or westbound track). reverse direction in DNA. signs and order of symbols 2 and 3.

Signed permutations can be generated as composite objects (i.e., start with one of the n!
permutations, and create all 2n of its signings, then repeat for the next permutation, and so on).

We instead consider natural operations that can change both parts of the object simultaneously.
We model the object using n two-sided ribbons, and we twist ribbons to create a new object.



Yuan (Friedrich) Qiu

Greedy and Speedy: New Iterative Gray Code Algorithms

Thesis Proposal Talk 29

Greedy and Speedy Generation of Signed Permutations

Greedily generate signed permutations by prioritizing 2-twists of the largest possible symbol then
1-twists of the largest possible symbol. We name the resulting Gray code signed plain changes.

Loopless generation via the ruler sequence ruler+(n,n-1,...,2,1, 2, 2, ..., 2) where

@ +k for 2-twisting k to the left.
@® -k for 2-twisting k to the right.
® +(n+k) for 1-twisting k.

S NS

[

Y

Plain changes (above with ropes) and the start of
our new signed plain changes (below with ribbons) for n = 4.

Generating Signed Permutations by
Twisting Two-Sided Ribbons

Yuan (Friedrich) Qiu! and Aaron Williams! [0000-0001-6816—4365]

ns.edu/people/faculty /aaron-williams/
ron.williams}@williams.edu

About LATIN

11111

Keywords: plain changes - signed permuta
- greedy Gray codes - combinatorial generati

LATIN 2024 conference paper.

We considered a dozen different greedy algorithms and consider this one to be the best.



Yuan (Friedrick

Greedy and Speedy: New Iterative Gray Code Al

A Python Implementation

A loopless implementation of our signed plain change order twisted(n) in Python 3.
Entries in the twisted ruler sequence ruler+(n,n—1,..., 2,1,2,2,...,2) select the
2-twist or 1-twist (i.e., flip) to applyfi. Programs are available online [37].

# Flip sign of value v in signed permutation p with unsigned inverse q
def flip(p, q, v): # with 1-based indezing, ie p[0] and q[0] are ignored.
plqlvl] = -plqlvl]
return p, q

# 2-twists value v to the left / right using delta = -1 / delta = 1

def twist(p, q, v, delta): # with 1-based indexing into both p and g
pos = qlv] # Use inverse to get the position of value v.
u = abs(p[pos+deltal) # Get value to the left or right of walue v.
plpos], plpos+delta] = -plpos+delta], -plpos] # Twist u and v.
qlv]l, qlu] = pos+delta, pos # Update unsigned inverse.
return p, q # Return signed permutation and its unsigned inverse.

# Generate each signed permutation in worst-case 0(1)-time.
def twisted(n):

m = 2*xn-1 # The mized-radiz bases are n, n-1, ..., 2, 1, 2,..., 2.
bases = tuple(range(n,1,-1)) + (2,) * n # but the 1 is omitted.
word = [0] * m # The mized-radiz word is initially 0 m.
dirs = [1] *m # Direction of change for digits in word.
focus = list(range(m+1)) # Focus pointers select digits to change.
flips = [lambda p,q,v=v: flip(p,q,v) for v in range(n,0,-1)]

twistsL = [lambda p,q,v=v: twist(p,q,v,-1) for v in range(m,1,-1)]
twistsR = [lambda p,q,v=v: twist(p,q,v, 1) for v in range(n,1,-1)]
fns = [None] + twistsL + flips + flips[-1::-1] + twistsR[-1::-1]
p = [None] + list(range(1,n+1)) # To use 1-based indezing we set
q = [None] + list(range(1,n+1)) # and ignore p[0] = q[0] = Nome.
yield p[1:] # Pause the function and return signed permutation p.
while focus[0] < m: # Continue if the digit to change is in word.
index = focus[0] # The indez of the digit to change in word.
focus[0] = 0 # Reset the first focus pointer.
word[index] += dirs[index] # Adjust the digit using its direction.
change = dirs[index] * (index+1) # Note: change can be negative.

if word[index] == 0 or word[index] == bases[index]-1: # If the
focus[index] = focus[index+1] # mized-radiz word's digit is at
focus[index+1] = index+1 # its min or maxz value, then update
dirs[index] = -dirs[index] # focus pointers, change direction.
p, q = fns[changel(p, q) # Apply twist or flip encoded by change.
yield p[i:]

# Demonstrating the use of our twisted function for n = 4.
for p in twisted(4): print(p) # Print all 2°n n! signed permutations.

Python implementation in the LATIN 2024 paper.
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