
Greedy and Speedy: New Iterative Gray Code Algorithms 1Yuan (Friedrich) Qiu Thesis Proposal Talk

Research Proposal

 Greedy and Speedy:

New Iterative Gray Code Algorithms

Yuan (Friedrich) Qiu
Williams College

Greedy and Speedy: New Iterative Gray Code Algorithms 2Yuan (Friedrich) Qiu Thesis Proposal Talk

Combinatorial Generation

Greedy and Speedy: New Iterative Gray Code Algorithms 3Yuan (Friedrich) Qiu Thesis Proposal Talk

In computer science, we often work with different types of combinatorial objects.
In many applications, we need to find an optimal object of a particular type and/or size according
to some metric (e.g., a minimum weight spanning tree of a graph).

The number of objects of a given type is often exponential with respect to the size.
● There are 2n binary strings with n bits.
● There are n! permutations of [n].
● There are nn-2 spanning trees of Kn.

Therefore, we usually don’t want to generate every object when finding an optimal one.

A spanning tree of the
complete graph Kn for n = 5.

Binary string with n = 5 bits.
It can model a knapsack solution for n = 5.

A permutation of [n] = {1,2, …, n} for n = 5.
It can model a TSP solution for n = 5.

Combinatorial Objects

0 0101 312 45

Greedy and Speedy: New Iterative Gray Code Algorithms 4Yuan (Friedrich) Qiu Thesis Proposal Talk

In some applications, it is necessary or beneficial to consider every object of a given type and size.
●Testing. Binary strings with n bits represent all possible states for a circuit or chip with n inputs.
●Exact algorithms. Permutations of [n] represent directed paths in a traveling salesman problem.
●Calculations. Some electrical engineering formulae sum over all spanning trees of a circuit.

Combinatorial generation refers to the efficient creation of every object in computer memory.
Since there are exponentially many objects, they should be created one at a time, not all at once.
Time complexity: How much time to create the next object (e.g., amortized O(n)-time per object)?

All spanning trees of Kn with n = 4.All binary strings with n = 3. All permutations with n = 3.

Combinatorial Generation

0 0 0
100

10 1
0 1 0

1 01
111

101
0 01

1 2 3
231

23 1
3 2 1

3 12
312

b1

b2
b3

1

32

Greedy and Speedy: New Iterative Gray Code Algorithms 5Yuan (Friedrich) Qiu Thesis Proposal Talk

Many contemporary programming languages have iterators that streamline the process of
providing one object at a time, and libraries of iterators for different combinatorial objects.

Unfortunately, this support is limited and flawed in many fundamental ways.
●Few combinatorial objects are available (e.g., permutations but not multiset permutations).
●Every object is returned as a separate entity. Thus �(n)-time (i.e. at least O(n)-time) is used.

This is wasteful since applications typically use each object and don’t need to store all of them.
●Objects are generated in lexicographic order. This “normal” order is familiar but not efficient.

Standard Python libraries do not generate multiset permutations

Programming Language Support

from itertools import permutations

for perm in permutations([1,2,3,4]):
 # do something with permutation
 print(perm)

>> (1,2,3,4)
>> (1,2,4,3)
>> …
>> (4,3,2,1)

Generating permutations with Python’s itertools library.

tuples
(non-mutable)

from itertools import permutations

for perm in permutations([1,2,3,3]):
 # do something with permutation
 print(perm)

>> (1,2,3,3)
>> (1,2,3,3)
>> …
>> (3,3,2,1)

Greedy and Speedy: New Iterative Gray Code Algorithms 6Yuan (Friedrich) Qiu Thesis Proposal Talk

3 12456

Standard Approach

⋮

⋮
4 31 2 5 6

current

next

Lexicographic order

12453 6

Better Approach

⋮

⋮

current

next

A Gray code is a minimal change order

124536

The standard approach is unacceptable for such a common computational task.
The situation is worse for less common objects (e.g., multiset permutations).

Successive objects can
differ everywhere i.e., �
(n) changes

Applications use
�(n)-time just
to read the new

next object

Iterators use
�(n)-time
to create the
next new object

Successive objects
differ by a constant
amount, i.e., � (1)
change

Applications use
�(1)-time to
process the

change

Iterators use
�(1)-time
to create the
next change

1

4

6

5

2

3

1

4

6

5

2

3

$#@%
computers!

❤ ❤️ ❤️️
computers! 1

4

6

5

2

3

Greedy and Speedy: New Iterative Gray Code Algorithms 7Yuan (Friedrich) Qiu Thesis Proposal Talk

Programmers ask the same questions year after year for objects that are not in standard libraries.
● This is repeated for every combinatorial object and every programming language.

…

Greedy and Speedy: New Iterative Gray Code Algorithms 8Yuan (Friedrich) Qiu Thesis Proposal Talk

Who is to blame?

Greedy and Speedy: New Iterative Gray Code Algorithms 9Yuan (Friedrich) Qiu Thesis Proposal Talk

The most influential Computer Science textbook has a nearly 40 year gap between topics.
●Sorting and searching (1973) is taught in every algorithms course.
●Combinatorial generation (2011) is taught in almost no algorithms courses.

}

ooops!

1968

1969

1973

2011!

Don Knuth!
(the Godfather of Computer Science)

200+ pages on
combinatorial

generation
in Volume 4

Greedy and Speedy: New Iterative Gray Code Algorithms 10Yuan (Friedrich) Qiu Thesis Proposal Talk

General Goals
Promote a modern approach to combinatorial generation.
●Greedy. One sentence descriptions of Gray code orders.
●Speedy. Loopless implementations (i.e., worst-case O(1)-time per object) that are simple

 enough to be implemented in any programming language.

Specific Goals
Focus on a combinatorial object that does not yet have a well-known generation algorithm.
●A signed permutation is a permutation in which each symbol is given a ± sign.

Stretch Goals
Solve one of Knuth’s open problems involving combinatorial generation.

A simple edge-exchange algorithm for generating the spanning trees of the complete graph Kn.

graycodes.com
TAOCP

Thesis Goals: Greedy and Speedy

Greedy and Speedy: New Iterative Gray Code Algorithms 11Yuan (Friedrich) Qiu Thesis Proposal Talk

Example of a combinatorial generation algorithm that is used in practice.

millions of
downloads

Research paper on multiset permutations. Implementation in R.

Greedy and Speedy: New Iterative Gray Code Algorithms 12Yuan (Friedrich) Qiu Thesis Proposal Talk

Ruler Sequences

Greedy and Speedy: New Iterative Gray Code Algorithms 13Yuan (Friedrich) Qiu Thesis Proposal Talk

Combinatorial objects can always be encoded as strings of symbols (e.g., binary representation).
So they can be put in lexicographic order, which generalizes counting and alphabetical order.

The issue with lexicographic order is that successive objects can be completely different.
A Gray code is an order in which successive objects differ in a constant amount by some metric.

Binary strings n = 3. Permutations n = 3.

Lexicographic Order

0 0 0
100

10 1
0 1 0

1 01
111

101
0 01

1 2 3
231

23 1
3 2 1

3 12
312

Start
with 1

Start
with 2

Start
with 3

Label the
edges

123 124

134

125

135 136

456

126

234

31

2

5

4

6

…
235 236

Greedy and Speedy: New Iterative Gray Code Algorithms 14Yuan (Friedrich) Qiu Thesis Proposal Talk

The ruler sequence with bases b = bn, bn-1, …, b1 has length (bn · bn-1 ··· b1)-1.
 ruler(b1) = 1, 1, …, 1
 ruler(b) = ruler(b’), n, ruler(b’), n, …, n, ruler(b’) where b’ = bn-1, bn-2, …, b1

These sequence are easy to generate efficiently: worst-case O(1)-time per entry.
They provide change sequences for lexicographic order and for various types of Gray codes.

A ruler’s tick marks indicate how many digits change when counting in decimal. For example, the tick mark at 200 has
height 3 since that number of digits change from 199 to 200. The sequence of heights is the decimal ruler sequence.
A meter stick has numbers from 0 to 999 (i.e., three base-10 digits).
 ruler(10,10,10) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, …, 1

A binary ruler’s ticks follow the binary ruler sequence and counting in binary.
 ruler(2, 2, 2) = 1, 2, 1, 3, 1, 2, 1
For permutations there is a factorial ruler sequence.
 ruler(3, 2, 1) = 2, 3, 2, 3, 2
It gives the number of changed symbols in the lexicographic order of permutations.

1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111

0 0 0
100

10 1
0 1 0

1 01
111

101
0 01

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 990···

1 2 3
231

23 1
3 2 1

3 12
312

1
2
1
3
1
2
1

2
3
2
3
2

Greedy and Speedy: New Iterative Gray Code Algorithms 15Yuan (Friedrich) Qiu Thesis Proposal Talk

Gray Codes
Minimal-Change Orders

Greedy and Speedy: New Iterative Gray Code Algorithms 16Yuan (Friedrich) Qiu Thesis Proposal Talk

Binary Reflected Gray Code
for binary strings

Greedy and Speedy: New Iterative Gray Code Algorithms 17Yuan (Friedrich) Qiu Thesis Proposal Talk

The binary reflected Gray code orders the n-bit binary
strings so that consecutive strings differ in one bit.
It is typically defined recursively as follows

B(n) = 0·B(n-1), 1·B(n-1)R with B(1) = 0, 1

where · denotes concatenation and R is list reflection.

Binary reflected Gray code B(n)
for n = 2 (left) and then n = 3 (right).

The Gray code is attributed to Frank Gray who referred
to it as reflected order in a 1945 patent from Bell Labs.
However, it was known (even at Bell Labs) before this.

While the recursive definition of B(n) explains its
global structure, it is neither the simplest or most
efficient definition for generating it iteratively.

Binary Reflected Gray Code

10
0 0

11
1 0

10
0 0

11
1 0

10
0 0

11
1 0

10
0 0

11
1 0

0
0
0
0
1
1
1
1

R

Greedy and Speedy: New Iterative Gray Code Algorithms 18Yuan (Friedrich) Qiu Thesis Proposal Talk

The greedy Gray code algorithm can be used to generate a list by making two choices.
● Choose a start object s.
● Choose a prioritization of the operations〈f1,f2,…,fm〉used to change the objects.

The algorithm succeeds when it generates a list of all of the objects. Otherwise, it fails.
It is simple (i.e., just make two choices) but not efficient (i.e., it stores all previous objects).

GreedyGray(s,〈f1,f2,…,fm〉)

● Initialize a list L = s.
●Repeatedly extend the list L as follows:

○Let x be the last object in the list.
○Let i be the minimum index with fi(x) ∉ L.

If there is no such index i, then stop.
○Add fi(x) to the end of the list.

Greedy and Speedy: New Iterative Gray Code Algorithms 19Yuan (Friedrich) Qiu Thesis Proposal Talk

The binary reflected Gray code is also generated greedily.
● Start with s = 0n (i.e., all zeros).
● Prioritize flipping bits from right to left.

This is not an efficient algorithm in terms of memory
because it needs to remember previous objects.

However, it is very simple to describe, so long as the
greedy Gray code algorithm has been explained.

It is also possible to generate this order in a more
efficient manner.

Greedily generating B(3)

Simpler: Greedily Flip the Rightmost Bit

0 0 0
100
10 1

0 1 0
1 01

111
101

0 01

Greedy and Speedy: New Iterative Gray Code Algorithms 20Yuan (Friedrich) Qiu Thesis Proposal Talk

The binary reflected Gray code’s change sequence is the
binary ruler sequence. In other words, successive entries
in ruler(2, 2, …, 2) specify which bit to change.

In other words, the difference between the lexicographic
order of binary strings (i.e., counting in binary) and the
binary reflected Gray code is that the ruler sequence
specifies the number of bits to change instead of the
single bit to change.

This leads to a loopless implementation of the binary
reflected Gray code.

Faster: Binary Ruler Sequence

0 0 0
100
10 1

0 1 0
1 01

111
101

0 01

1
2
1
3
1
2
1

Efficiently generating B(3)

Greedy and Speedy: New Iterative Gray Code Algorithms 21Yuan (Friedrich) Qiu Thesis Proposal Talk

Rotary encoders use the binary reflected Gray code.

Inside a dial
(e.g., volume knob)

Binary reflected
Gray code B(13)

Greedy and Speedy: New Iterative Gray Code Algorithms 22Yuan (Friedrich) Qiu Thesis Proposal Talk

Plain Changes
for permutations

Greedy and Speedy: New Iterative Gray Code Algorithms 23Yuan (Friedrich) Qiu Thesis Proposal Talk

Plain changes orders the permutations of [n] so that
consecutive permutations differ by a swap (i.e,. exchange
a pair of adjacent entries).

It is typically defined recursively by alternately zigging
(right to left) and zagging (left to right) the value n
through successive permutations of [n-1].

P(n) = zig(p1), zag(p2), …, zig(p(n-1)!-1), zag(p(n-1)!),
with P(2) = p1, p2 = 12, 21

Plain changes P(n)
for n = 3 (left) and then n = 4 (right).

The order was discovered in 1600s by bell-ringers.
It was rediscovered multiple times in the 1960s and is
often known as Steinhaus-Johnson-Trotter order.

Plain Changes 1 2 3 4
1 2 34
1 2 34
1 2 34

2314
231 4
231 4

231 4
23 1 4
23 1 4
23 14
23 14

3 2 14
3 2 14
3 2 14
3 2 1 4
3 12 4
3 12 4
3 12 4
3 124
3124
312 4
312 4

312 4

1 2 3
231
23 1

3 2 1
3 12
312

Greedy and Speedy: New Iterative Gray Code Algorithms 24Yuan (Friedrich) Qiu Thesis Proposal Talk

Plain changes is also generated greedily.
● Start with s = 1 2 ··· n (i.e., identity permutation).
● Prioritize swaps involving the largest possible value.

This is not an efficient algorithm in terms of memory
because it needs to remember previous objects.

However, it is very simple to describe, so long as the
greedy Gray code algorithm has been explained.

It is also possible to generate this order in a more
efficient manner.

Simpler: Greedily Swap the Largest Value
1 2 3 4
1 2 34
1 2 34

1 2 34
1 234

1 234

⋮

1 23 4
1 23 4

1 23 4
1 23 4

Greedily generating P(4)

Greedy and Speedy: New Iterative Gray Code Algorithms 25Yuan (Friedrich) Qiu Thesis Proposal Talk

The changes in plain changes follow one of the factorial
ruler sequences with signs: ruler±(n, n-1, …, 1).
● Entries of +k for swapping k to the left.
● Entries of –k for swapping k to the right.

This leads to a loopless algorithm for generating
plain changes P(n).

Faster: Factorial Ruler Sequence

+4
+4
+4
+3
 – 4
 – 4
 – 4
+3
+4
 ⋮

1 2 3 4
1 2 34
1 2 34

1 2 34
1 234

1 234

⋮

1 23 4
1 23 4

1 23 4
1 23 4

⋮

Greedily generating P(4)

Greedy and Speedy: New Iterative Gray Code Algorithms 26Yuan (Friedrich) Qiu Thesis Proposal Talk

Bell ringing.

Greedy and Speedy: New Iterative Gray Code Algorithms 27Yuan (Friedrich) Qiu Thesis Proposal Talk

New Result:
Signed Plain Changes

Greedy and Speedy: New Iterative Gray Code Algorithms 28Yuan (Friedrich) Qiu Thesis Proposal Talk

A signed permutation is a permutation of [n] in which each symbol is given a + or - sign.
There are 2n · n! signed permutations and they are the product of a permutation and binary string.

+1+2, +1-2, -1+2, -1-2, +2+1, +2-1, -2+1, -2-1
Signed permutations for n = 2.

Signed permutations model orders in which the elements also have an orientation.

Signed permutations can be generated as composite objects (i.e., start with one of the n!
permutations, and create all 2n of its signings, then repeat for the next permutation, and so on).

We instead consider natural operations that can change both parts of the object simultaneously.
We model the object using n two-sided ribbons, and we twist ribbons to create a new object.

A 2-twist which changes the
signs and order of symbols 2 and 3.

Trains and subways have orientations
(e.g., eastbound or westbound track).

Genes either appear in the forward or
reverse direction in DNA.

Signed Permutations

+4
–3
+2
–1

+4
–2
+3
–1

Greedy and Speedy: New Iterative Gray Code Algorithms 29Yuan (Friedrich) Qiu Thesis Proposal Talk

Greedily generate signed permutations by prioritizing 2-twists of the largest possible symbol then
1-twists of the largest possible symbol. We name the resulting Gray code signed plain changes.

Loopless generation via the ruler sequence ruler±(n, n-1, …, 2, 1, 2, 2, …, 2) where
● +k for 2-twisting k to the left.
● –k for 2-twisting k to the right.
● ±(n+k) for 1-twisting k.

We considered a dozen different greedy algorithms and consider this one to be the best.

LATIN 2024 conference paper.

Greedy and Speedy Generation of Signed Permutations

Plain changes (above with ropes) and the start of
our new signed plain changes (below with ribbons) for n = 4.

Greedy and Speedy: New Iterative Gray Code Algorithms 30Yuan (Friedrich) Qiu Thesis Proposal Talk

Python implementation in the LATIN 2024 paper.

